首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two cobalt complexes, [Co3(L)2(CH3OH)23‐OH)2] ( 1 ) and [Co(L)(bpe)0.5] · H2O ( 2 ) [H2L = 5‐(4‐carboxyphenoxy)‐pyridine‐2‐carboxylic acid; bpe = 1, 2‐bis(4‐pyridyl)ethylene] were synthesized and fully characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction, thermogravimetric analysis (TGA), and magnetic analysis. Complex 1 has a two‐dimensional (2D) structure with puckered Co–O–Co chains, and 2 displays a three‐dimensional (3D) network containing one‐dimensional rectangular channels with dimensions of 9.24 × 13.84 Å. In complex 1 , variable‐temperature magnetic susceptibility measurements indicate antiferromagnetic interactions between cobalt magnetic centers.  相似文献   

2.
The orange cerium‐niobium‐oxysulfide Ce3NbO4S3 was synthesized by the solid state reaction of CeO2, Ce‐metal, Nb2O5 and sulfur at 1100 °C. The crystal structure has orthorhombic symmetry (space group Pbam, a = 7.055(1), b = 14.571(3), c = 7.627(2) Å, Z = 4) and contains isolated [Nb2S4O6]10− ions consisting of two strongly distorted, edge sharing NbO3SS2/2 octahedra. Niobium is connected to three oxygen and three sulfur atoms. The cerium atoms are eightfold coordinated by oxygen and sulfur atoms. Certain oxygen and sulfur atoms are not connected to niobium, but exclusively surrounded by cerium. By connecting these cation polyhedra, one recognizes layers of polycations perpendicular to the c‐axis. The magnetic susceptibility shows Curie‐Weiss behavior with an effective magnetic moment μeff = 2.63(1) μB/Ce in agreement with Ce3+. A Weiss‐constant θp = –12(1) K indicates weak antiferromagnetic coupling. No magnetic ordering was detected above 2 K.  相似文献   

3.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

4.
The structure of a novel oxido‐aminoxyl (=`nitronyl nitroxide') biradical, 2,2′‐(1‐oxidopyridine‐2,6‐diyl)bis[4,5‐dihydro‐4,4,5,5‐tetramethyl‐3‐oxido‐1H‐imidazol‐1‐oxyl] hydrate ( 1 ⋅H2O) was established by X‐ray analysis in the solid state: monoclinic, space group P21/c, Z=4 with a=12.621(4), b=15.704(5), and c=13.001(4) Å, and β=115.202(6)°. Variable‐temperature magnetic susceptibilities show a weak antiferromagnetic interaction between the two oxido‐substituted aminoxyl moieties of 1 , indicative of a singlet ground state. AM1 Calculations located minima for the possible structure based on the X‐ray crystal structure. A hybride density‐functional‐theory calculation with the UB3LYP method from the X‐ray crystal structure establishes the same spin sign in the two aminoxyl moieties and shows that a small spin density is localized at the C‐atoms of the pyridine moiety. These theoretic results are in good agreement with the determined weak antiferromagnetic interaction of 1 .  相似文献   

5.
Two novel complexes {[Co(A-glu)(Im)2]·0.5H2O}n (1) and [Cd(A-glu)(Im)3]n (2) (H2A-glu=N-acetyl-L-glutamic acid, Im=imidazole) have been synthesized from the reaction of H2A-glu with Co(CH3COO)2·4H2O or Cd(CH3COO)2·2H2O in the presence of Im. Both of the complexes display different coordination environment and similar one-dimensional chain structure. The magnetic susceptibility measurements for 1 show a weak antiferromagnetic interaction between two cobalt(Ⅱ) ions bridged by A-glu ligand. The complex 2 exhibits an intense fluorescent emission in solid state at room temperature.  相似文献   

6.
The synthesis, crystal structure, and magnetic properties (from a combined experimental and First‐Principles Bottom‐Up theoretical study) of the new compound catena‐dichloro(2‐Cl‐3Mpy)copper(II), 1 , [2‐Cl‐3Mpy=2‐chloro‐3‐methylpyridine] are described and rationalized. Crystals of 1 present well isolated magnetic 1D chains (no 3D order was experimentally observed down to 1.8 K) and magnetic frustration stemming from competing ferromagnetic nearest‐neighbor (JNN) interactions and antiferromagnetic next‐nearest neighbor (JNNN) interactions, in which α=JNNN/JNN <?0.25. These magnetic interactions give rise to a unique magnetic topology: a two‐leg zigzag ladder composed of edge‐sharing up‐down triangles with antiferromagnetic interactions along the rails and ferromagnetic interactions along the zigzag chain that connects the rails. Crystals of 1 also present a random distribution of the 2‐Cl‐3Mpy groups, which are arranged in two different orientations, each with a 50 % occupancy. This translates into a random static structural disorder within each chain by virtue of which the value of the JNN magnetic interactions can randomly take one of the following three values: 53, 36, and 16 cm?1. The structural disorder does not affect the JNNN value, which in all cases is approximately ?9 cm?1. A proper statistical treatment of this disorder provides a computed magnetic susceptibility curve that reproduces the main features of the experimental data.  相似文献   

7.
We prepared single crystals of basic copper formate Cu2(OH)3HCO2 ( 1) by hydrolysis of formate anions in an aqueous solution of copper formate. X‐ray structure analysis showed that this material has a two‐dimensional triangular lattice network with S=1/2. The temperature dependence of magnetic susceptibility revealed antiferromagnetic ordering at 5.4 K. A spin‐flop transition was observed at about 20 kOe at 2 K, thereby indicating metamagnetic‐like behavior. The saturation magnetization was almost one‐half of the theoretical value at 2 K under 70 kOe. The magnetic behaviors of 1 were also discussed with regard to its crystal structure. The preparation method presented herein is convenient and available for single crystal growth of metal hydroxide derivatives with various anions.  相似文献   

8.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

9.
Synthesis, structural, and magnetochemical characterization of the tetranuclear [Ni4O4] heterocubane cluster [NiCl(L1)(MeOH)]4, 1, employing the bidentate N,O-ligand 2-hydroxymethyl-2-oxazoline, HL1, is reported. In the solid state, each nickel(II) is coordinated in a distorted octahedral environment, located on four corners of a [Ni4(μ3-O)4] cubane core motif. Measurements of the magnetic susceptibility in solution (Evans method) as well as in the solid state (magnetic susceptibility balance) gave values of 5.74 and 6.08 unpaired electrons, respectively, indicating a spin ground state of S = 3. At maximum spin degeneracy (S = 4), eight unpaired electrons would be expected. Magnetic properties were further evaluated by SQUID measurements of 1, confirming the spin ground state of 1 to be S = 3. The observed deviation is caused by antiferromagnetic coupling between the four Ni atoms. In addition, broken-symmetry DFT calculations confirmed an overlap of magnetic orbitals resulting in exchange coupling between the four nickel(II) ions of 1.  相似文献   

10.
Single‐electron oxidation of a diiron‐sulfur complex [Cp*Fe(μ‐bdt)FeCp*] ( 1 , Cp*=η5‐C5Me5; bdt=benzene‐1,2‐dithiolate) to [Cp*Fe(μ‐bdt)FeCp*]+ ( 2 ) has been experimentally conducted. The bdt ligand with redox‐active character has been computationally proposed to be a dianion (bdt2?) rather than previously proposed monoanion (bdt·?) radical in 1 though it has un‐equidistant aromatic C? C bond lengths. The ground state of 1 is predicted to be two low‐spin ferrous ions (SFe=0) and 2 has a medium‐spin ferric ion (SFe=1/2) and a low‐spin ferrous center (SFe=0), and the oxidation of 1 to 2 is calculated to be a single‐metal‐based process. Both complexes have no significant antiferromagnetic coupling character.  相似文献   

11.
We report on the synthesis and characterization of atomically precise one‐dimensional diradical peripentacene polymers on a Au(111) surface. By means of high‐resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet–triplet spin‐flip inelastic excitations with an effective exchange coupling (Jeff) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon‐based optoelectronics and spintronics.  相似文献   

12.
In order to shed light upon the nature and mechanism of 4f-3d magnetic exchange interactions, a series of binuclear complexes of lanthanide(3+) and chromium(3+) with the general formula [Ln(L)5(H2O)2Cr(CN)6]·mL· nH2O (Ln=La (1), Ce (2), Pr (3), Nd (4); x=5, y=2, m=1 or 2, n=2 or 2.5; L=2-pyrrolidinone) and [Ln(L)4(H2O)3Cr(CN)6] ·nH2O (Ln=Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Er (10); x=4, y=3, m=0, n= 1.5 or 2.0; L=2-pyrrolidinone) were prepared and the X-ray crystal structures of complexes 2, 6 and 7 were determined. All the compounds consist of a Ln-CN-Cr unit, in which Ln^3+ in a square antiprism environment is bridged to an octahedral coordinated Cr^3+ ion through a cyano group. The magnetic properties of the complexes 3 and 6-10 show an overall antiferromagnetic behavior. The fitting to the experimental magnetic susceptibilities of 7 give g= 1.98, J=0.40 cm^-1, zJ'= -0.21 cm^-1 on the basis of a binuclear spin system (Scd=7/2, Scr=3/2), revealing an intra-molecular Gd^3+-Cr^3+ ferromagnetic interaction and an inter-molecular antiferromagnetic interaction. For 7 the calculation of quantum chemical density functional theory (DFT), combined with the broken symmetry approach, showed that the calculated spin coupling constant was 20.3 cm^-1, supporting the observation of weak ferromagnetic intra-molecular interaction in 7. The spin density distributions of 7 in both the high spin ground state and the broken symmetry state were obtained, and the spin coupling mechanism between Gd^3+ and Cr^3+ was discussed.  相似文献   

13.
The oxidation of 1,5‐dimethyl‐3‐(2′‐pyridyl)‐6‐thiooxotetrazane (SvdH3py) by benzoquinone leads to a 1:1 adduct of 1,5‐dimethyl‐3‐(2′‐pyridyl)‐6‐thiooxoverdazyl radical (Svdpy) with hydroquinone (hq). The single‐crystal X‐ray diffraction of this adduct at room temperature (RT) shows that the radicals exhibit a slight curvature that leads to the formation of alternating head‐to‐tail (antiparallel) stacked 1D chains. Moreover, temperature‐dependent X‐ray measurements at 100, 200, and 303 K reveal that the lateral slippages between the radicals of the stacks |δ1| and |δ2| vary from 0.64 to 0.78 Å and 0.54 to 0.40 Å between 100 and 303 K. Despite the alternation of the inter‐radical distances and lateral slippages, the magnetic susceptibility data can be fitted with excellent agreement using a regular one‐dimensional antiferromagnetic chain model with J=?5.9 cm?1. Wavefunction‐based calculations indicate an alternation of the magnetic interaction parameters correlated with the structural analysis at RT. Moreover, they demonstrate that the thermal slippage of the radicals induces a switching of the physical behavior, since the exchange interaction changes from antiferromagnetic (?0.9 cm?1) at 100 K to ferromagnetic (1.4 cm?1) at 303 K. The theoretical approach thus reveals a much richer magnetic behavior than the analysis of the magnetic susceptibility data and ultimately questions the relevance of a spin‐coupled picture based on temperature‐independent parameters.  相似文献   

14.
Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high‐spin cobalt(II) complexes, namely [CoII(dmf)6](BPh4)2 ( 1 ) and [CoII2(sym‐hmp)2](BPh4)2 ( 2 ), in which dmf=N,N‐dimethylformamide; sym‐hmp=2,6‐bis[(2‐hydroxyethyl)methylaminomethyl]‐4‐methylphenolate, and BPh4?=tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual CoII site. In compound 1 , this approach reveals the correlation between the single‐ion easy magnetization direction and a trigonal elongation axis of the CoII coordination octahedron. In exchange‐coupled dimer 2 , the determination of the individual CoII magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both CoII sites deviate from the single‐ion behavior because of antiferromagnetic exchange coupling.  相似文献   

15.
The cobalt(II) in [Co(NCS)2(4-methoxypyridine)2]n are linked by pairs of thiocyanate anions into linear chains. In contrast to a previous structure determination, two crystallographically independent cobalt(II) centers have been found to be present. In the antiferromagnetic state, below the critical temperature (Tc=3.94 K) and critical field (Hc=290 Oe), slow relaxations of the ferromagnetic chains are observed. They originate mainly from defects in the magnetic structure, which has been elucidated by micromagnetic Monte Carlo simulations and ac measurements using pristine and defect samples. The energy barriers of the relaxations are Δτ1=44.9(5) K and Δτ2=26.0(7) K for long and short spin chains, respectively. The spin excitation energy, measured by using frequency-domain EPR spectroscopy, is 19.1 cm−1 and shifts 0.1 cm−1 due to the magnetic ordering. Ab initio calculations revealed easy-axis anisotropy for both CoII centers, and also an exchange anisotropy Jxx/Jzz of 0.21. The XXZ anisotropic Heisenberg model (solved by using the density renormalization matrix group technique) was used to reconcile the specific heat, susceptibility, and EPR data.  相似文献   

16.
The CoII and FeII complexes 1Co and 1Fe with a coordinated phosphorus radical were easily obtained through a charge‐transfer approach from the MI precursors LMI(tol) (M=Co, Fe; L=CH(MeC=NDipp)2, Dipp=2,6‐i Pr2C6H3) to the diazafluorenylidene‐substituted phosphaalkene 1 . Structural, magnetic, and computational studies on 1Co and 1Fe indicate a weak antiferromagnetic interaction between the high‐spin MII ion and the phosphorus radical, resulting in a triplet and quartet ground state, respectively. Complexes 1Co and 1Fe are the first examples of phosphorus‐radical‐coordinated transition‐metal complexes synthesized by charge transfer, providing a new approach to access radicals of heavier main‐group elements.  相似文献   

17.
Herein we present a systematic study of the structures and magnetic properties of six coordination compounds with mixed azide and zwitterionic carboxylate ligands, [M(N3)2(2‐mpc)] (2‐mpc=N‐methylpyridinium‐2‐carboxylate; M=Co for 1 and Mn for 2 ), [M(N3)2(4‐mpc)] (4‐mpc=N‐methylpyridinium‐4‐carboxylate; M=Co for 3 and Mn for 4 ), [Co3(N3)6(3‐mpc)2(CH3OH)2] ( 5 ), and [Mn3(N3)6(3‐mpc)2] ( 6 ; 3‐mpc=N‐methylpyridinium‐3‐carboxylate). Compounds 1 – 3 consist of one‐dimensional uniform chains with (μ‐EO‐N3)2(μ‐COO) triple bridges (EO=end‐on); 5 is also a chain compound but with alternating [(μ‐EO‐N3)2(μ‐COO)] triple and [(EO‐N3)2] double bridges; Compound 4 contains two‐dimensional layers with alternating [(μ‐EO‐N3)2(μ‐COO)] triple, [(μ‐EO‐N3)(μ‐COO)] double, and (EE‐N3) single bridges (EE=end‐to‐end); 6 is a layer compound in which chains similar to those in 5 are cross‐linked by a μ3‐1,1,3‐N3 azido group. Magnetically, the three CoII compounds ( 1 , 3 , and 5 ) all exhibit intrachain ferromagnetic interactions but show distinct bulk properties: 1 displays relaxation dynamics at very low temperature, 3 is an antiferromagnet with field‐induced metamagnetism due to weak antiferromagnetic interchain interactions, and 5 behaves as a noninnocent single‐chain magnet influenced by weak antiferromagnetic interchain interactions. The magnetic differences can be related to the interchain interactions through π–π stacking influenced by different substitution positions in the ligands and/or different magnitudes of intrachain coupling. All of the MnII compounds show overall intrachain/intralayer antiferromagnetic interactions. Compound 2 shows the usual one‐dimensional antiferromagnetism, whereas 4 and 6 exhibit different weak ferromagnetism due to spin canting below 13.8 and 4.6 K, respectively.  相似文献   

18.
A new hydroxo‐bridged dimeric Cr(III) complex [Cr(saltn)OH]2·4H2O [H2saltn=N,N′‐bis(salicylidene)trimethylenediamine] has been synthesized and its structural and magnetic properties have been investigated. The complex crystallizes in the triclinic space group P‐1 with one dimeric formula unit in a cell of dimensions a=0.95828(19) nm, b=0.95926(19) nm, c=1.0437(2) nm, α=86.77(3)°, β=82.48(3)°, and γ=64.93(3)°. The geometry around each chromium(III) center is six‐coordinate, distorted‐octahedral. The bridging Cr2O2 unit is strictly planar, as required by the crystallographic symmetry. The Cr? O? Cr′ bridging angle is 99.94(16)°, and the distance between Cr…Cr′ is 0.3019 nm. The magnetic susceptibility of the complex has been examined in the range of 2‐300 K. By using the spin‐spin coupled model for an S1=S2=3/2 dimeric system , the magnetic data were fitted to give the parameters of g=2.01(1), J=‐0.85(2) cm‐1, and zJ' =0.18(3)cm‐1, indicating the presence of a weak antiferromagnetic spin‐exchange interaction between the Cr(III) ions in the binuclear complex.  相似文献   

19.
The crystal structure of the spin‐canted antiferromagnet β‐p‐NCC6F4CNSSN. at 12 K (reported in this work) was found to adopt the same orthorhombic space group as that previously determined at 160 K. The change in the magnetic properties of these two crystal structures has been rigorously studied by applying a first‐principles bottom‐up procedure above and below the magnetic transition temperature (36 K). Calculations of the magnetic exchange pathways on the 160 K structure reveal only one significant exchange coupling (J(d1)=?33.8 cm?1), which generates a three‐dimensional diamond‐like magnetic topology within the crystal. The computed magnetic susceptibility, χ(T), which was determined by using this magnetic topology, quantitatively reproduces the experimental features observed above 36 K. Owing to the anisotropic contraction of the crystal lattice, both the geometry of the intermolecular contacts at 12 K and the microscopic JAB radical–radical magnetic interactions change: the J(d1) radical–radical interaction becomes even more antiferromagnetic (?43.2 cm?1) and two additional ferromagnetic interactions appear (+7.6 and +7.3 cm?1). Consequently, the magnetic topologies of the 12 and 160 K structures differ: the 12 K magnetic topology exhibits two ferromagnetic sublattices that are antiferromagnetically coupled. The χ(T) curve, computed below 36 K at the limit of zero magnetic field by using the 12 K magnetic topology, reproduces the shape of the residual magnetic susceptibility (having subtracted the contribution to the magnetization arising from spin canting). The evolution of these two ferromagnetic JAB contributions explains the change in the slope of the residual magnetic susceptibility in the low‐temperature region.  相似文献   

20.
The spin dynamics of Cr8Mn, a nine‐membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8Mn is a rare example of a large odd‐membered AF ring, and has an odd‐number of 3d‐electrons present. Odd‐membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated‐spin ground states. The chemical synthesis and structures of two Cr8Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground‐spin‐state crossing from S=1/2 to S=3/2 in Cr8Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin‐pair correlations and scalar‐spin chirality, shows a non‐collinear spin structure that fluctuates between non‐planar states of opposite chiralities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号