首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A library of modular iridium complexes derived from thioether‐phosphite/phosphinite ligands has been evaluated in the asymmetric iridium‐catalyzed hydrogenation of minimally functionalized olefins. The modular ligand design has been shown to be crucial in finding highly selective catalysts for each substrate. A DFT study of the transition state responsible for the enantiocontrol in the Ir‐catalyzed hydrogenation is also described and used for further optimization of the crucial stereodefining moieties. Excellent enantioselectivities (enantiomeric excess (ee) values up to 99 %) have been obtained for a range of substrates, including E‐ and Z‐trisubstituted and disubstituted olefins, α,β‐unsaturated enones, tri‐ and disubstituted alkenylboronic esters, and olefins with trifluoromethyl substituents.  相似文献   

2.
The mechanism of the asymmetric hydrogenation of exocyclic α,β‐unsaturated carbonyl compounds with the (aS)‐Ir/iPr‐BiphPhox catalyst was studied by NMR experiments and DFT computational analyses. Computed optical yields of the asymmetric hydrogenation proceeding by an iridium(I)/iridium(III) mechanism involving a transition state stabilized through two intramolecular hydrogen bonds are in good accordance with the experimental ee values.  相似文献   

3.
The full details of the asymmetric epoxidation of α,β‐unsaturated esters catalyzed by yttrium complexes with biaryldiol ligands are described. An yttrium–biphenyldiol catalyst, generated from Y(OiPr)3–biphenyldiol ligand–triphenylarsine oxide (1:1:1), is suitable for the epoxidation of various α,β‐unsaturated esters. With this catalyst, β‐aryl α,β‐unsaturated esters gave high enantioselectivities and good yields (≤99 % ee). The reactivity of this catalyst is good, and the catalyst loading could be decreased to as little as 0.5–2 mol % (the turnover number was up to 116), while high enantiomeric excesses were maintained. For β‐alkyl α,β‐unsaturated esters, an yttrium–binol catalyst, generated from Y(OiPr)3–binol ligand–triphenylphosphine oxide (1:1:2), gave the best enantioselectivities (≤97 % ee). The utility of the epoxidation reaction was demonstrated in an efficient synthesis of (?)‐ragaglitazar, a potential antidiabetes agent.  相似文献   

4.
Chromone has been noted to be one of the most challenging substrates in the asymmetric 1,4‐addition of α,β‐unsaturated carbonyl compounds. By employing the rhodium complex associated with a chiral diene ligand, (R,R)‐Ph‐bod*, the 1,4‐addition of a variety of arylboronic acids was realized to give high yields of the corresponding flavanones with excellent enantioselectivities (≥97 % ee, 99 % ee for most substrates). Ring‐opening side products, which would lead to erosion of product enantioselectivity, were not observed under the stated reaction conditions.  相似文献   

5.
Chiral complexes of BINOL‐based ligands with zirconium tert‐butoxide catalyze the Friedel–Crafts alkylation reaction of indoles with β‐trifluoromethyl‐α,β‐unsaturated ketones to give functionalized indoles with an asymmetric tertiary carbon center attached to a trifluoromethyl group. The reaction can be applied to a large number of substituted α‐trifluoromethyl enones and substituted indoles. The expected products were obtained with good yields and ees of up to 99 %.  相似文献   

6.
A bis‐cyclometalated chiral‐at‐metal rhodium complex catalyzes the Diels–Alder reaction between N‐Boc‐protected 3‐vinylindoles (Boc=tert‐butyloxycarbonyl) and β‐carboxylic ester‐substituted α,β‐unsaturated 2‐acyl imidazoles with good‐to‐excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92–99 % ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2‐acyl imidazole dienophile by two‐point binding and overrules the preferred regioselectivity of the uncatalyzed reaction.  相似文献   

7.
NCN‐pincer Ru‐complexes containing bis(oxazolinyl)phenyl ligands serve as suitable catalysts in the direct conjugate additions of α,β‐unsaturated carbonyl compounds, including ketones, esters, and amides, as well as vinylphosphonates, giving various β‐alkynyl carbonyl and phosphonate compounds. A bis(oxazolinyl)phenyl (phebox)–Ru complex also catalyzes the asymmetric conjugate addition of an alkyne with a β‐substituted, α,β‐unsaturated ketone to produce a chiral β‐alkynyl ketone.  相似文献   

8.
Asymmetric conjugate alkynylation of cyclic α,β‐unsaturated carbonyl compounds (ketones, esters, and amides) was realized by use of diphenyl[(triisopropylsilyl)ethynyl]methanol as an alkynylating reagent in the presence of a rhodium catalyst coordinated with a new chiral diene ligand (Fc‐bod; bod=bicyclo[2.2.2]octa‐2,5‐diene, Fc=ferrocenyl) to give high yields of the corresponding β‐alkynyl‐substituted carbonyl compounds with 95–98 % ee.  相似文献   

9.
Optically active medium‐sized cyclic carbonyl compounds bearing an α‐chiral carbon center are of interest in pharmaceutical sciences and asymmetric synthesis. Herein, SpinPhox/IrI catalysts have been demonstrated to be highly enantioselective in the asymmetric hydrogenation of the CC bonds in the exocyclic α,β‐unsaturated cyclic carbonyls, including a broad range of α‐alkylidene lactams, unsaturated cyclic ketones, and lactones. It is noteworthy that the procedure can be successfully used in the asymmetric hydrogenation of the challenging α‐alkylidenelactam substrates with six‐ or seven‐membered rings, thus affording the corresponding optically active carbonyl compounds with an α‐chiral carbon center in generally excellent enantiomeric excesses (up to 98 % ee). Synthetic utility of the protocol has also been demonstrated in the asymmetric synthesis of the anti‐inflammatory drug loxoprofen and its analogue, as well as biologically important ε‐aminocaproic acid derivatives.  相似文献   

10.
Tetra‐tert‐butyl‐P5‐deltacyclene 5 represents one of only two asymmetric P‐C cage compounds, which are available in highly enantiomerically enriched versions. This paper reports about stereoselective substitution reactions of 5 to develop the chemistry of optically active P‐C cages further. Electrophilic substitution of the only secondary phosphorus atom P1 of the cage with methyl and benzyl groups was achieved with 92 % and >99 % de, but the yields of the reactions are limited due to competing processes. The uncatalyzed hydrophosphination reaction of a monosubstituted allene and two α,β‐unsaturated carbonyl compounds with 5 proved to be the method of choice. cis‐Butanone‐P5‐deltacyclene 12 is formed in 92 % yield and with >99 % de and cis‐pentanone‐P5‐deltacyclene 13a is accessible with >99 % de for P1 and 92 % de for the attached carbon atom at the same time. Besides stereoselectivity, the hydrophosphination reaction of 5 performs with a good regioselectivity. The chiral cage 5 controls the stereoselectivity of its reactions for the cage elements as well as for the α position of a substituent.  相似文献   

11.
The first examples of one‐pot highly chemo‐ and enantioselective dynamic kinetic asymmetric transformations (DYKATs) involving α,β‐unsaturated aldehydes and propargylated carbon acids are presented. These DYKATs, which proceed by a combination of catalytic iminium activation, enamine activation, and Pd0‐catalyzed enyne cycloisomerization, give access to functionalized cyclopentenes with up to 99 % ee and can be used for the generation of all‐carbon quaternary stereocenters.  相似文献   

12.
New asymmetric conjugate reduction of β,β‐disubstituted α,β‐unsaturated ketones and esters was accomplished with alkoxylhydrosilanes in the presence of chiral rhodium(2,6‐bisoxazolinylphenyl) complexes in high yields and high enantioselectivity. (E)‐4‐Phenyl‐3‐penten‐2‐one and (E)‐4‐phenyl‐4‐isopropyl‐3‐penten‐2‐one were readily reduced at 60 °C in 95 % ee and 98 % ee, respectively, by 1 mol % of catalyst loading. (EtO)2MeSiH proved to be the best hydrogen donor of choice. tert‐Butyl (E)‐β‐methylcinnamate and β‐isopropylcinnamate could also be reduced to the corresponding dihydrocinnamate derivatives up to 98 % ee.  相似文献   

13.
The first highly enantioselective phosphonylation of α,β‐unsaturated N‐acylpyrroles has been developed. Excellent yields (91–99 %) and enantioselectivities (up to >99 % enantiomeric excess (ee)) were observed for a broad spectrum of both phosphites and N‐acylpyrroles under mild conditions. In particular, when diethyl phosphite was employed to test the scope of the N‐acylpyrroles, almost optically pure products (98 to >99 % ee) were obtained for 20 examples of N‐acylpyrroles. Moreover, optically pure α‐substituted β‐ or γ‐amino phosphonates can be obtained by several simple transformations of the pyrrolyl phosphonates. The versatility of the N‐acylpyrrole moiety makes the phosphorus adducts powerful chiral building blocks that enable the synthesis of various phosphonate‐containing compounds. Finally, the present strategy can also be applied to the asymmetric hydrophosphonylation of N‐acylimines with high enantioselectivities (93 to >99 % ee).  相似文献   

14.
An easily available and efficient chiral N,N′‐dioxide–nickel(II) complex catalyst has been developed for the direct catalytic asymmetric aldol reaction of α‐isothiocyanato imide with aldehydes which produces the products in morderate to high yields (up to 98 %) with excellent diastereo‐ (up to >99:1 d.r.) and enantioselectivities (up to >99 % ee). A variety of aromatic, heteroaromatic, α,β‐unsaturated, and aliphatic aldehydes were found to be suitable substrates in the presence of 2.5 mol % L ‐proline‐derived N,Ndioxide L5 –nickel(II) complex. This process was air‐tolerant and easily manipulated with available reagents. Based on experimental investigations, a possible transition state has been proposed to explain the origin of reactivity and asymmetric inductivity.  相似文献   

15.
Isosteviol‐amino acid conjugates were synthesized and used as chiral catalysts for the asymmetric three‐component Mannich reaction with hydroxyacetone as donor molecule. Good yields (up to 98%) and excellent stereoselectivities (up to 97:3 dr and 99% ee) were achieved in a short reaction time. In addition, syn‐ or anti‐configurations of α‐hydroxy‐β‐amino carbonyl compounds were obtained as main products with different chiral catalysts.  相似文献   

16.
Efficient ruthenium‐, rhodium‐, palladium‐, copper‐ and iridium‐catalysed methodologies have been recently developed for the synthesis of quinolines by the reaction of 2‐aminobenzyl alcohols with carbonyl compounds (aldehydes and ketones) or the related alcohols. The reaction is assumed to proceed via a sequence involving initial metal‐catalysed oxidation of 2‐aminobenzyl alcohols to the related 2‐aminobenzaldehydes, followed by cross aldol reaction with a carbonyl compound under basic conditions to afford α,β‐unsaturated carbonyl compounds. These aldehydes or ketones can be also generated in situ via dehydrogenation of the related primary and secondary alcohols. In the final step cyclodehydration of the α,β‐unsaturated carbonyl compound intermediates gives quinolines. Good yields of quinolines were also obtained by reacting 2‐nitrobenzyl alcohols and secondary alcohols in the presence of a ruthenium catalyst. Finally, aniline derivatives afforded also a useful access to quinolines by the reaction with 1,3‐propanediol or 3‐amino‐1‐propanol, or in a three‐component reaction with benzyl alcohol and aliphatic alcohols.  相似文献   

17.
Cooperative catalysts consisting of chiral Rh/Ag nanoparticles and Sc(OTf)3 have been developed that catalyze asymmetric 1,4‐addition reactions of arylboronic acids with α,β‐unsaturated amides efficiently. The reaction has been considered one of the most challenging reactions because of the low reactivity of the amide substrates. The new catalysts provide the desired products with outstanding enantioselectivities (>98 % ee) in the presence of low loadings (<0.5 mol %) of the catalyst.  相似文献   

18.
Εniminium ions were prepared from the corresponding α,β‐unsaturated carbonyl compounds (enones and enals), and were found to be promoted to their respective triplet states by energy transfer. The photoexcited intermediates underwent intra‐ or intermolecular [2+2] photocycloaddition in good yields (50–78 %) upon irradiation at λ=433 nm or λ=457 nm. Iridium or ruthenium complexes with a sufficiently high triplet energy were identified as efficient catalysts (2.5 mol % catalyst loading) for the reaction. The intermolecular [2+2] photocycloaddition of an eniminium ion derived from a chiral secondary amine proceeded with high enantioselectivity (88 % ee).  相似文献   

19.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

20.
α,β‐Unsaturated esters have been employed as substrates in iridium‐catalyzed asymmetric hydrogenation. Full conversions and good to excellent enantioselectivities (up to 99 % ee) were obtained for a broad range of substrates with both aromatic‐ and aliphatic substituents on the prochiral carbon. The hydrogenated products are highly useful as building blocks in the synthesis of a variety of natural products and pharmaceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号