首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flexible lithium‐ion batteries (LIBs) have recently attracted increasing attention with the fast development of bendable electronic systems. Herein, a facile and template‐free solvothermal method is presented for the fabrication of hybrid yolk–shell CoS2 and nitrogen‐doped graphene (NG) sheets. The yolk–shell architecture of CoS2 encapsulated with NG coating is designed for the dual protection of CoS2 to address the structural and interfacial stability concerns facing the CoS2 anode. The as‐prepared composite can be assembled into a film, which can be used as a binder‐free and flexible electrode for LIBs that does not require any carbon black conducting additives or current collectors. When evaluating lithium‐storage properties, such a flexible electrode exhibits a high specific capacity of 992 mAh g?1 in the first reversible discharge capacity at a current rate of 100 mA g?1 and high reversible capacity of 882 mAh g?1 after 150 cycles with excellent capacity retention of 89.91 %. Furthermore, a reversible capacity as high as 655 mAh g?1 is still achieved after 50 cycles even at a high rate of 5 C due to the yolk–shell structure and NG coating, which not only provide short Li‐ion and electron pathways, but also accommodate large volume variation.  相似文献   

2.
Multi‐wall Sn/SnO2@carbon hollow nanofibers evolved from SnO2 nanofibers are designed and programable synthesized by electrospinning, polypyrrole coating, and annealing reduction. The synthesized hollow nanofibers have a special wire‐in‐double‐wall‐tube structure with larger specific surface area and abundant inner spaces, which can provide effective contacting area of electrolyte with electrode materials and more active sites for redox reaction. It shows excellent cycling stability by virtue of effectively alleviating pulverization of tin‐based electrode materials caused by volume expansion. Even after 2000 cycles, the wire‐in‐double‐wall‐tube Sn/SnO2@carbon nanofibers exhibit a high specific capacity of 986.3 mAh g?1 (1 A g?1) and still maintains 508.2 mAh g?1 at high current density of 5 A g?1. This outstanding electrochemical performance suggests the multi‐wall Sn/SnO2@ carbon hollow nanofibers are great promising for high performance energy storage systems.  相似文献   

3.
In the work, a facile and green two‐step synthetic strategy was purposefully developed to efficiently fabricate hierarchical shuttle‐shaped mesoporous ZnFe2O4 microrods (MRs) with a high tap density of ~0.85 g cm3, which were assembled by 1D nanofiber (NF) subunits, and further utilized as a long‐life anode for advanced Li‐ion batteries. The significant role of the mixed solvent of glycerin and water in the formation of such hierarchical mesoporous MRs was systematically investigated. After 488 cycles at a large current rate of 1000 mA g?1, the resulting ZnFe2O4 MRs with high loading of ~1.4 mg per electrode still preserved a reversible capacity as large as ~542 mAh g?1. Furthermore, an initial charge capacity of ~1150 mAh g?1 is delivered by the ZnFe2O4 anode at 100 mA g?1, resulting in a high Coulombic efficiency of ~76 % for the first cycle. The superior Li‐storage properties of the as‐obtained ZnFe2O4 were rationally associated with its mesoprous micro‐/nanostructures and 1D nanoscaled building blocks, which accelerated the electron transportation, facilitated Li+ transfer rate, buffered the large volume variations during repeated discharge/charge processes, and provided rich electrode–electrolyte sur‐/interfaces for efficient lithium storage, particularly at high rates.  相似文献   

4.
A novel ambient hydrolysis deposition (AHD) methodology that employs sequential water adsorption followed by a hydrolysis reaction to infiltrate SnO2 nanoparticles into the nanopores of mesoporous carbon in a conformal and controllable manner is introduced. The empty space in the SnO2/C composites can be adjusted by varying the number of AHD cycles. An SnO2/C composite with an intermediate SnO2 loading exhibited an initial specific delithiation capacity of 1054 mAh g?1 as an anode for Li‐ion batteries. The capacity contribution from SnO2 in the composite electrode approaches the theoretical capacity of SnO2 (1494 mAh g?1) if both Sn alloying and SnO2 conversion reactions are considered to be reversible. The composite shows a specific capacity of 573 mAh g?1 after 300 cycles, that is, one of the most stable cycling performances for SnO2/mesoporous carbon composites. The results demonstrated the importance of well‐tuned empty space in nanostructured composites to accommodate expansion of the electrode active mass during alloying/dealloying and conversion reactions.  相似文献   

5.
MoS2 holds great promise as high‐rate electrode for lithium‐ion batteries since its large interlayer can allow fast lithium diffusion in 3.0–1.0 V. However, the low theoretical capacity (167 mAh g?1) limits its wide application. Here, by fine tuning the lithiation depth of MoS2, we demonstrate that its parent layered structure can be preserved with expanded interlayers while cycling in 3.0–0.6 V. The deeper lithiation and maintained crystalline structure endows commercially micrometer‐sized MoS2 with a capacity of 232 mAh g?1 at 0.05 A g?1 and circa 92 % capacity retention after 1000 cycles at 1.0 A g?1. Moreover, the enlarged interlayers enable MoS2 to release a capacity of 165 mAh g?1 at 5.0 A g?1, which is double the capacity obtained under 3.0–1.0 V at the same rate. Our strategy of controlling the lithiation depth of MoS2 to avoid fracture ushers in new possibilities to enhance the lithium storage of layered transition‐metal dichalcogenides.  相似文献   

6.
Nanostructured hybrid metal sulfides have attracted intensive attention due to their fascinating properties that are unattainable by the single‐phased counterpart. Herein, we report an efficient approach to construct cobalt sulfide/molybdenum disulfide (Co9S8/MoS2) wrapped with reduced graphene oxide (rGO). The unique structures constructed by ultrathin nanosheets and synergetic effects benefitting from bimetallic sulfides provide improved lithium ions reaction kinetics, and they retain good structural integrity. Interestingly, the conductive rGO can facilitate electron transfer, increase the electronic conductivity and accommodate the strain during cycling. When evaluated as anode materials for lithium‐ion batteries (LIBs), the resultant reduced graphene oxide‐coated cobalt sulfide/molybdenum disulfide (Co9S8/MoS2@rGO) nanotubes deliver high specific capacities of 1140, 948, 897, 852, 820, 798 and 784 mAh g?1 at the various discharging current densities of 0.2, 0.5, 1, 2, 3, 4 and 5 A g?1, respectively. In addition, they can maintain an excellent cycle stability with a discharge capacity of 807 mAh g?1 at 0.2 A g?1 after 70 cycles, 787 mAh g?1 at 1 A g?1 after 180 cycles and 541 mAh g?1 at 2 A g?1 after 200 cycles. The proposed method may offer fundamental understanding for the rational design of other hybrid functional composites with high Li‐storage properties.  相似文献   

7.
Direct capture and storage of abundant but intermittent solar energy in electrical energy‐storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar‐driven chargeable lithium–sulfur (Li‐S) battery, in which the capture and storage of solar energy was realized by oxidizing S2? ions to polysulfide ions in aqueous solution with a Pt‐modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g?1 during 2 h photocharging process with a discharge potential of around 2.53 V versus Li+/Li. A specific capacity of 199 mAh g?1, reaching the level of conventional lithium‐ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation.  相似文献   

8.
A nanostructured Mn3O4/C electrode was prepared by a one‐step polyol‐assisted pyro‐synthesis without any post‐heat treatments. The as‐prepared Mn3O4/C revealed nanostructured morphology comprised of secondary aggregates formed from carbon‐coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn3O4/C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g?1 at a current density of 33 mA g?1, good capacity retentions (1141 mAh g?1 with 100 % Coulombic efficiencies at the 100th cycle), and rate capabilities (307 and 202 mAh g?1 at 528 and 1056 mA g?1, respectively) when tested as an anode for lithium‐ion battery applications.  相似文献   

9.
The lithium–oxygen battery has the potential to deliver extremely high energy densities; however, the practical use of Li‐O2 batteries has been restricted because of their poor cyclability and low energy efficiency. In this work, we report a novel Li‐O2 battery with high reversibility and good energy efficiency using a soluble catalyst combined with a hierarchical nanoporous air electrode. Through the porous three‐dimensional network of the air electrode, not only lithium ions and oxygen but also soluble catalysts can be rapidly transported, enabling ultra‐efficient electrode reactions and significantly enhanced catalytic activity. The novel Li‐O2 battery, combining an ideal air electrode and a soluble catalyst, can deliver a high reversible capacity (1000 mAh g?1) up to 900 cycles with reduced polarization (about 0.25 V).  相似文献   

10.
It is well accepted that metallic tin as a discharge (reduction) product of SnOx cannot be electrochemically oxidized below 3.00 V versus Li+/Li0 due to the high stability of Li2O, though a similar oxidation can usually occur for a transition metal formed from the corresponding oxide. In this work, nanosized Ni2SnO4 and NiO/SnO2 nanocomposite were synthesized by coprecipitation reactions and subsequent heat treatment. Owing to the catalytic effect of nanosized metallic nickel, metallic tin can be electrochemically oxidized to SnO2 below 3.00 V. As a result, the reversible lithium‐storage capacities of the nanocomposite reach 970 mAh g?1 or above, much higher than the theoretical capacity (ca. 750 mAh g?1) of SnO2, NiO, or their composites. These findings extend the well‐known electrochemical conversion reaction to non‐transition‐metal compounds and may have important applications, for example, in constructing high‐capacity electrode materials and efficient catalysts.  相似文献   

11.
Porous carbon anodes with a controllable Vmes/Vmic ratio were synthesized through the self‐assembly of poly(benzoxazine‐co‐resol) and the simultaneous hydrolysis of tetraethyl orthosilicate (TEOS) followed by carbonization and removal of silica. The Vmes/Vmic ratio of the carbon can be controlled in the range of approximately 1.3–32.6 through tuning the amount of TEOS. For lithium‐ion battery anodes, a correlation between the electrochemical performance and Vmes/Vmic ratio has been established. A high Vmes/Vmic ratio in porous carbons is favorable for enhancing the accessibility of Li ions to active sites provided by the micropores and for achieving good lithium storage performance. The obtained porous carbon exhibits a high reversible capacity of 660 mAh g?1 after 70 cycles at a current density of 100 mA g?1. Moreover, at a high current density of 3000 mA g?1, the capacity still remains at 215 mAh g?1, showing a fast charge‐discharge potential. This synthesis method relying on modified benzoxazine chemistry with the hydrolysis of TEOS may provide a new route for the development of mesoporous carbon‐based electrode materials.  相似文献   

12.
Lithium‐ion batteries (LIBs) are primary energy storage devices to power consumer electronics and electric vehicles, but their capacity is dramatically decreased at ultrahigh charging/discharging rates. This mainly originates from a high Li‐ion/electron transport barrier within a traditional electrode, resulting in reaction polarization issues. To address this limitation, a functionally layer‐graded electrode was designed and fabricated to decrease the charge carrier transport barrier within the electrode. As a proof‐of‐concept, functionally layer‐graded electrodes composing of TiO2(B) and reduced graphene oxide (RGO) exhibit a remarkable capacity of 128 mAh g−1 at a high charging/discharging rate of 20 C (6.7 A g−1), which is much higher than that of a traditionally homogeneous electrode (74 mAh g−1) with the same composition. This is evidenced by the improvement of effective Li ion diffusivity as well as electronic conductivity in the functionally layer‐graded electrodes.  相似文献   

13.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

14.
Phosphorus‐rich metal phosphides have very high lithium storage capacities, but they are difficult to prepare. A low‐temperature phosphorization method based on Mg reducing PCl3 in ZnCl2 molten salt at 300 °C is developed to synthesize phosphorus‐rich CuP2@C from a Cu‐MOF derived Cu@C composite. Abnormal oxidation of Cu by Zn2+ in the molten salt is observed, which leads to the porous honeycomb nanostructure and homogeneously distributed ultrafine CuP2 nanocrystals. The honeycomb CuP2@C exhibits excellent lithium storage performance with high reversible capacity (1146 mAh g?1 at 0.2 A g?1) and superior cycling stability (720 mAh g?1 after 600 cycles at 1.0 A g?1), showing the promising application of P‐rich metal phosphides in lithium ion batteries.  相似文献   

15.
MoS2 nanoflowers with expanded interlayer spacing of the (002) plane were synthesized and used as high‐performance anode in Na‐ion batteries. By controlling the cut‐off voltage to the range of 0.4–3 V, an intercalation mechanism rather than a conversion reaction is taking place. The MoS2 nanoflower electrode shows high discharge capacities of 350 mAh g?1 at 0.05 A g?1, 300 mAh g?1 at 1 A g?1, and 195 mAh g?1 at 10 A g?1. An initial capacity increase with cycling is caused by peeling off MoS2 layers, which produces more active sites for Na+ storage. The stripping of MoS2 layers occurring in charge/discharge cycling contributes to the enhanced kinetics and low energy barrier for the intercalation of Na+ ions. The electrochemical reaction is mainly controlled by the capacitive process, which facilitates the high‐rate capability. Therefore, MoS2 nanoflowers with expanded interlayers hold promise for rechargeable Na‐ion batteries.  相似文献   

16.
An amidation‐dominated re‐assembly strategy is developed to prepare uniform single atom Ni/S/C nanotubes. In this re‐assembly process, a single‐atom design and nano‐structured engineering are realized simultaneously. Both the NiO5 single‐atom active centers and nanotube framework endow the Ni/S/C ternary composite with accelerated reaction kinetics for potassium‐ion storage. Theoretical calculations and electrochemical studies prove that the atomically dispersed Ni could enhance the convention kinetics and decrease the decomposition energy barrier of the chemically‐absorbed small‐molecule sulfur in Ni/S/C nanotubes, thus lowering the electrode reaction overpotential and resistance remarkably. The mechanically stable nanotube framework could well accommodate the volume variation during potassiation/depotassiation process. As a result, a high K‐storage capacity of 608 mAh g?1 at 100 mA g?1 and stable cycling capacity of 330.6 mAh g?1 at 1000 mA g?1 after 500 cycles are achieved.  相似文献   

17.
Multi-wall Sn/SnO2@carbon hollow nanofibers evolved from SnO2 nanofibers are designed and programable synthesized by electrospinning, polypyrrole coating, and annealing reduction. The synthesized hollow nanofibers have a special wire-in-double-wall-tube structure with larger specific surface area and abundant inner spaces, which can provide effective contacting area of electrolyte with electrode materials and more active sites for redox reaction. It shows excellent cycling stability by virtue of effectively alleviating pulverization of tin-based electrode materials caused by volume expansion. Even after 2000 cycles, the wire-in-double-wall-tube Sn/SnO2@carbon nanofibers exhibit a high specific capacity of 986.3 mAh g−1 (1 A g−1) and still maintains 508.2 mAh g−1 at high current density of 5 A g−1. This outstanding electrochemical performance suggests the multi-wall Sn/SnO2@ carbon hollow nanofibers are great promising for high performance energy storage systems.  相似文献   

18.
Although lithium–oxygen batteries possess a high theoretical energy density and are considered as promising candidates for next‐generation power systems, the enhancement of safety and cycling efficiency of the lithium anodes while maintaining the high energy storage capability remains difficult. Here, we overcome this challenge by cross‐stacking aligned carbon nanotubes into porous networks for ultrahigh‐capacity lithium anodes to achieve high‐performance lithium–oxygen batteries. The novel anode shows a reversible specific capacity of 3656 mAh g?1, approaching the theoretical capacity of 3861 mAh g?1 of pure lithium. When this anode is employed in lithium–oxygen full batteries, the cycling stability is significantly enhanced, owing to the dendrite‐free morphology and stabilized solid–electrolyte interface. This work presents a new pathway to high performance lithium–oxygen batteries towards practical applications by designing cross‐stacked and aligned structures for one‐dimensional conducting nanomaterials.  相似文献   

19.
Poly(1,5‐diaminoanthraquinone) is synthesized by oxidative polymerization of diaminoanthraquinone monomers and investigated as an organic host for Li‐storage reaction. Benefiting from its high density of redox‐active, Li+‐associable benzoquinone groups attached to conducting polyaniline backbones, this polymer undergoes its cathodic reaction predominately through Li+‐insertion/extraction processes, delivering a very high reversible capacity of 285 mAh g?1. In addition, the PDAQ polymer cathode exhibits an excellent rate capability (125 mAh g?1 at 800 mA g?1) and a considerable cyclability with a capacity retention of ~160 mAh g?1 over 200 cycles, possibly serving as a sustainable, high capacity Li+ host cathode for Li‐ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 235–238  相似文献   

20.
Zn2GeO4/N‐doped graphene nanocomposites have been synthesized through a fast microwave‐assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well‐embedded in N‐doped graphene sheets by in situ reducing and doping. Importantly, the N‐doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume‐expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as‐formed Zn2GeO4/N‐doped graphene nanocomposite exhibits high capacity (1463 mAh g?1 at a current density of 100 mA g?1), good cyclability, and excellent rate capability (531 mAh g?1 at a current density of 3200 mA g?1). Its superior lithium‐storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well‐stabilized by the high electronic conduction and flexibility of N‐doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary‐oxide‐based composites as high‐performance electrode materials that involve structural conversion and transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号