首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two complexes, cis‐[MnL2(NCS)2] ( 1 ) and cis‐[ZnL2(NCS)2] ( 2 ) with asymmetrical substituted triazole ligands [L = 3,4‐dimethyl‐5‐(2‐pyridyl)‐1,2,4‐triazole], were synthesized and characterized by elemental analysis, UV/Vis and FT‐IR spectroscopy as well as thermogravimetric analyses (TGA), powder XRD, and single‐crystal X‐ray diffraction. In the complexes, each L molecule adopts a chelating bidentate mode by the nitrogen atoms of pyridyl and triazole. Both complexes have a similar distorted octahedral [MN6] core (M = Mn2+ and Zn2+) with two NCS ions in the cis position.  相似文献   

2.
Self‐assembled metallosupramolecular architectures (MSAs) with built‐in functionalities such as light‐harvesting metal centers are a promising approach for developing emergent properties within discrete molecular systems. Herein we describe the synthesis of two new but simple “click” ligands featuring a bidentate 2‐pyridyl‐1,2,3‐triazole chelate pocket linked to a monodentate pyridyl (either 3‐ or 4‐substituted, L1 and L2 ) unit. The ligands and the corresponding four PdIIand PtIImetallo‐ligands ( Pd1 , Pd2 , Pt1 and Pt2 ) were synthesized and characterized using nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI‐MS), and X‐ray crystallography. Solid‐state characterization of the series of ligands and metallo‐ligands revealed that these compounds display a co‐planar conformation of all the aryl units. The PtIIcontaining metallo‐ligands ( Pt1 and Pt2 ) were found to assemble into square ( Sqr ) and triangular ( Tri ) shaped architectures when combined with neutral PdCl2 linker units. Additionally, the ability of the PtIImetallo‐ligands and Tri to photocatalyze the cycloaddition of singlet oxygen to anthracene was investigated.  相似文献   

3.
Density functional theory (DFT)/Becke–Lee–Yang–Parr (B3LYP) and gauge‐including atomic orbital (GIAO) calculations were performed on a number of 1,2,4‐triazole derivatives, and the optimized structural parameters were employed to ascertain the nature of their predominant tautomers. 13C and 15N NMR chemical shifts of 3‐substituted 1,2,4‐triazole‐5‐thiones and their propargylated derivatives were calculated via GIAO/DFT approach at the B3LYP level of theory with geometry optimization using a 6‐311++G** basis set. A good agreement between theoretical and experimental 13C and 15N NMR chemical shifts could be found for the systems investigated. The data generated were useful in predicting 15N chemical shifts of all the nitrogen atoms of the triazole ring, some of which could not be obtained in solution state 15N HMBC/HSQC NMR measurements. The energy profile computed for the dipropargylated derivatives was found to follow the product distribution profile of regioisomers formed during propargylation of 1,2,4‐triazole thiones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Molecular recognition continues to be an area of keen interest for supramolecular chemists. The investigated [M( L )2]2+ metallo‐ligands (M=PdII, PtII, L =2‐(1‐(pyridine‐4‐methyl)‐1 H‐1,2,3‐triazol‐4‐yl)pyridine) form a planar cationic panel with vacant pyridyl binding sites. They interact with planar neutral aromatic guests through π–π and/or metallophilic interactions. In some cases, the metallo‐ligands also interacted in the solid state with AgI either through coordination to the pendant pyridyl arms, or through metal–metal interactions, forming coordination polymers. We have therefore developed a system that reliably recognises a planar electron‐rich guest in solution and in the solid state, and shows the potential to link the resultant host–guest adducts into extended solid‐state structures. The facile synthesis and ready functionalisation of 2‐pyridyl‐1,2,3‐triazole ligands through copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) “click” chemistry should allow for ready tuning of the electronic properties of adducts formed from these systems.  相似文献   

5.
In the title organic–inorganic hybrid complex, poly[[[μ‐3,5‐bis(3‐pyridyl)‐1,2,4‐triazole]tri‐μ3‐oxido‐tetra‐μ2‐oxido‐oxidodicobalt(II)dimolybdenum(VI)] monohydrate], {[Co2Mo2O8(C12H9N5)]·H2O}n, the asymmetric unit is composed of two CoII centers, two [MoVIO4] tetrahedral units, one neutral 3,5‐bis(3‐pyridyl)‐1,2,4‐triazole (BPT) ligand and one solvent water molecule. The cobalt centers both exhibit octahedral [CoO5N] coordination environments. Four CoII and four MoVI centers are linked by μ2‐oxide and/or μ3‐oxide bridges to give an unprecedented bimetallic octanuclear [Co4Mo4O22N4] cluster, which can be regarded as the first example of a metal‐substituted octamolybdate and exhibits a structure different from those of the eight octamolybdate isomers reported to date. The bimetallic oxide clusters are linked to each other through corner‐sharing to give two‐dimensional inorganic layers, which are further bridged by trans‐BPT ligands to generate a three‐dimensional organic–inorganic hybrid architecture with six‐connected distorted α‐Po topology.  相似文献   

6.
In the tetranuclear copper complex tetrakis[μ‐3,5‐bis(2‐pyridyl)‐1,2,4‐triazolido]bis[3,5‐bis(2‐pyridyl)‐1,2,4‐triazolido]dicopper(I)dicopper(II) dihydrate, [CuI2CuII2(C12H8N5)6]·2H2O, the asymmetric unit is composed of one CuI center, one CuII center, three anionic 3,5‐bis(2‐pyridyl)‐1,2,4‐triazole (2‐BPT) ligands and one solvent water molecule. The CuI and CuII centers exhibit [CuIN4] tetrahedral and [CuIIN6] octahedral coordination environments, respectively. The three independent 2‐BPT ligands adopt different chelating modes, which link the copper centers to generate a chair‐like tetranuclear metallomacrocycle with metal–metal distances of about 4.4 × 6.2 Å disposed about a crystallographic inversion center. Furthermore, strong π–π stacking interactions and O—H...N hydrogen‐bonding systems link the tetracopper clusters into a two‐dimensional supramolecular network.  相似文献   

7.
Two series of 4‐substituted N‐[1‐(pyridine‐3‐ and ‐4‐yl)ethylidene]anilines have been synthesized using different methods of conventional and microwave‐assisted synthesis, and linear free‐energy relationships have been applied to the 13C NMR chemical shifts of the carbon atoms of interest. The substituent‐induced chemical shifts have been analyzed using single substituent parameter and dual substituent parameter methods. The presented correlations describe satisfactorily the field and resonance substituent effects having similar contributions for C1 and the azomethine carbon, with exception of the carbon atom in para position to the substituent X. In both series, negative ρ values have been found for C1′ atom (reverse substituent effect). Quantum chemical calculations of the optimized geometries at MP2/6‐31G++(d,p) level, together with 13C NMR chemical shifts, give a better insight into the influence of the molecular conformation on the transmission of electronic substituent effects. The comparison of correlation results for different series of imines with phenyl, 4‐nitrophenyl, 2‐pyridyl, 3‐pyridyl, 4‐pyridyl group attached at the azomethine carbon with the results for 4‐substituted N‐[1‐(pyridine‐3‐ and ‐4‐yl)ethylidene]anilines for the same substituent set (X) indicates that a combination of the influences of electronic effects of the substituent X and the π1‐unit can be described as a sensitive balance of different resonance structures.  相似文献   

8.
The title compound, μ‐aqua‐1:2κ2O‐penta­aqua‐1κ2O,2κ3O‐μ‐3,6‐bis(6‐methyl‐2‐pyridyl)­pyridazine‐1κ2N1,N6:2κ2N2,N3‐chloro‐1κCl‐dinickel(II) trichloride trihydrate, [Ni2Cl(C16H14­N4)(H2O)6]Cl3·3H2O, consists of two NiII atoms, a 3,6‐bis(6‐methyl‐2‐pyridyl)­pyridazine mol­ecule, four Cl atoms and nine water mol­ecules. The two Ni atoms are octahedrally coordinated by N and Cl atoms, and by water mol­ecules, and the three six‐membered rings, a pyridazine and two picolines, are planar to within 0.181 (3) Å. The crystal structure is stabilized by an intra‐ and intermolecular hydrogen‐bonding scheme involving water–water and water–chlorine interactions.  相似文献   

9.
Attempts to use alkylation to introduce a positive charge at the nitrogen atom of the 4‐pyridyl ring in the bis(bidentate) triazole ligand N4‐(4‐pyridyl)‐3,5‐di(2‐pyridyl)‐1,2,4‐triazole ( pydpt ) were made to ascertain what effect a strongly electron‐withdrawing group would have on the magnetic properties of any subsequent iron(II) complexes. Alkylation of pydpt under relatively mild conditions led in some cases to unexpected rearrangement products. Specifically, when benzyl bromide is used as the alkylating agent, and the reaction is carried out in refluxing acetonitrile, the N4 substituent moves to the N1 position. However, when the same reaction is performed in dichloromethane at room temperature, the rearrangement does not occur and the desired product containing an alkylated N4 substituent is obtained. Heating a pure sample of N4‐Bzpydpt?Br to reflux in MeCN resulted in clean conversion to N1Bzpydpt.Br . This is consistent with N4‐Bzpydpt.Br being the kinetic product whereas N1Bzpydpt.Br is the thermodynamic product. When methyl iodide is used as the alkylating agent, the N4 to N1 rearrangement occurs even at room temperature, and at reflux pydpt is doubly alkylated. The observation of the lowest reported temperatures for an N4 to N1 rearrangement is due to this particular rearrangement involving nucleophilic aromatic substitution: a possible mechanism for this transformation is suggested.  相似文献   

10.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni‐N3O single‐atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni?O interaction, resulting in a vacancy‐defect Ni‐N3‐V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no‐vacancy‐defect Ni‐N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy‐defect in Ni‐N3‐V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm?2 and high Faradaic efficiency over 90 % at ?0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h?1, much higher than those of Ni‐N4 SAC, and being one of the best reported electrocatalysts for CO2‐to‐CO conversion to date.  相似文献   

11.
The ground geometrical and electronic structures, charge transfer (CT) behaviors, absorption, and emission properties of the three copper(I) complexes [Cu(pypz)(POP)]+ (1) , [Cu(pympz)(POP)]+ (2) , and [Cu(pytfmpz)(POP)]+ (3) (pypz=1‐(2‐pyridyl)pyrazole, pympz=3‐methyl‐1‐(2‐pyridyl)pyrazole, and pytfmpz=3‐trifluoromethyl‐1‐(2‐pyridyl)pyrazole), have been investigated using density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT). The vertical absorption energies of the all copper(I) complexes are well reproduced by TD‐DFT calculations based on the CT amount calculations. The triplet emission properties of the all copper(I) complexes were correctly evaluated at BMK/LANL2DZ/6‐31G* level of theory. In addition, the thermally activated delayed fluorescence properties of 1–3 were discussed in detail based on the spatial separation of the HOMO and LUMO and vertical excited energies. These theoretical insights should be expected to provide some guides for the design and synthesis of efficient luminescent copper(I) complexes. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
A new bridging ligand, 2,3‐di(2‐pyridyl)‐5‐phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN‐CNN‐type coordination mode. The reaction of dpppzH with cis‐[(bpy)2RuCl2] (bpy=2,2′‐bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)]2+ ( 12+ ) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)]3+ ( 23+ ) was prepared from complex 12+ and [(Mebip)RuCl3] (Mebip=bis(N‐methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C?CPh)]2+ ( 42+ ) has been prepared from complex 12+ , in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 12+ is emissive at room temperature, with an emission λmax=695 nm. No emission was detected for complex 23+ at room temperature in MeCN, whereas complex 42+ displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3‐di(2‐pyridyl)‐5,6‐diphenylpyrazine.  相似文献   

13.
The 15N as well as 1H and 13C chemical shifts of nine substituted tetrazolopyridines and their corresponding tetrazolopyridinium salts have been determined by using NMR spectroscopy at the natural abundance level of all nuclei in CD3CN. In this paper, we report, for the first time, the N‐alkylation reaction of electron deficient tetrazolopyridines. The treatment of tetrazolopyridines 5–13 with one equivalent of trialkyloxonium tetrafluoroborate leads to a mixture of two isomers, i.e. N3‐ and N2‐alkyl tetrazolo[1,5‐a]pyridinium salts. It has been observed that the N3‐isomer is always the major isomer, except in the case of the CF3 substituent, where the two isomers are obtained in the same amount. The quaternary tetrazolopyridinium nitrogen N3 is shielded by around 100 ppm (parts per million) with respect to the parent tetrazolopyridine. Experimental data are interpreted by means of density functional theory (DFT) calculations, including solvent‐induced effects, within the conductor‐like polarizable continuum model (CPCM). Good agreements between theoretical and experimental 1H, 13C and 15N NMR were found. The combination of multinuclear magnetic resonance spectroscopy with gauge including atomic orbital (GIAO) DFT calculations is a powerful tool in the structural elucidation for both neutral and cationic heterocycles and in the determination of the orientation of N‐alkylation of tetrazolopyridines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The crystal structures of two salts, products of the reactions between [(5‐methyl‐2‐pyridyl)aminomethylene]bis(phosphonic acid) and 4‐aminopyridine or ammonia, namely bis(4‐aminopyridinium) hydrogen [(5‐methyl‐2‐pyridinio)aminomethylene]diphosphonate 2.4‐hydrate, 2C5H7N2+·C7H10N2O6P22−·2.4H2O, (I), and triammonium hydrogen [(5‐methyl‐2‐pyridyl)aminomethylene]diphosphonate monohydrate, 3NH4+·C7H9N2O6P23−·H2O, (II), have been determined. In (I), the Z configuration of the ring N—C and amino N—H bonds of the bisphosphonate dianion with respect to the Cring—Namino bond is consistent with that of the parent zwitterion. Removing the H atom from the pyridyl N atom results in the opposite E configuration of the bisphosphonate trianion in (II). Compound (I) exhibits a three‐dimensional hydrogen‐bonded network, in which 4‐aminopyridinium cations and water molecules are joined to ribbons composed of anionic dimers linked by O—H...O and N—H...O hydrogen bonds. The supramolecular motif resulting from a combination of these three interactions is a common phenomenon in crystals of all of the Z‐isomeric zwitterions of 4‐ and 5‐substituted (2‐pyridylaminomethylene)bis(phosphonic acid)s studied to date. In (II), ammonium cations and water molecules are linked to chains of trianions, resulting in the formation of double layers.  相似文献   

15.
In the title compound, C18H13N5, the two pyridyl rings form dihedral angles of 32.7 (2) and 30.1 (2)° with the triazole ring. The most favoured orientation of the pyridyl rings is that with their N atoms on opposite sides of the triazole ring directed towards the phenyl ring. π–π‐Stacking interactions involving pyridyl rings are observed along the a axis at a perpendicular distance of 3.670 (3) Å. This arrangement is further stabilized by weak intermolecular C—H?N hydrogen bonds.  相似文献   

16.
Phosphole‐substituted phosphaalkenes (PPAs) of the general formula Mes*P?C(CH3)?(C4H2P(Ph))?R 5 a – c (Mes*=2,4,6‐tBu3Ph; R=2‐pyridyl ( a ), 2‐thienyl ( b ), phenyl ( c )) have been prepared from octa‐1,7‐diyne‐substituted phosphaalkenes by utilizing the Fagan–Nugent route. The presence of two differently hybridized phosphorus centers (σ23 and σ33) in 5 offers the possibility to selectively tune the HOMO–LUMO gap of the compounds by utilizing the different reactivity of the two phosphorus heteroatoms. Oxidation of 5 a – c by sulfur proceeds exclusively at the σ33‐phosphorus atom, thus giving rise to the corresponding thioxophospholes 6 a – c . Similarly, 5 a is selectively coordinated by AuCl at the σ33‐phosphorus atom. Subsequent second AuCl coordination at the σ23‐phosphorus heteroatom results in a dimetallic species that is characterized by a gold–gold interaction that provokes a change in π conjugation. Spectroscopic, electrochemical, and theoretical investigations show that the phosphaalkene and the phosphole both have a sizable impact on the electronic properties of the compounds. The presence of the phosphaalkene unit induces a decrease of the HOMO–LUMO gap relative to reference phosphole‐containing π systems that lack a P?C substituent.  相似文献   

17.
The tetrabutylammonium (TBA+) salts of square‐planar monoanionic gold complexes of the unsymmetrically substituted Ar,H‐edt2? 1,2‐dithiolene ligands (Ar,H‐edt2?=arylethylene‐1,2‐dithiolato; Ar=phenyl ( 1 ?), 2‐naphthyl ( 2 ?), and 1‐pyrenyl ( 3 ?)) were synthesized and characterized by spectroscopic and electrochemical methods and the corresponding neutral species ( 1 , 2 , and 3 , respectively) were obtained in CH2Cl2 solution at room temperature by diiodine oxidation. The single‐crystal X‐ray diffraction structural data collected for (TBA+)( 2 ?), supported by DFT theoretical calculations, are consistent with the ene‐1,2‐dithiolate form of the ligand and the AuIII oxidation state. All complexes feature intense near‐IR absorptions (at about 1.5 μm) in their neutral states and Vis‐emitting properties in the 400–550 nm range, the energy of which is controlled by the charge of the complex in the case of the 3 ?/ 3 couple. The spectroscopic and electrochemical features of 1 x? and 2 x? (x=0, 1), both in their cis and trans conformations, were investigated by means of DFT and time‐dependent (TD) DFT calculations.  相似文献   

18.
N‐Heterocyclic carbenes and their heavier homologues are, in part, stabilized by delocalization of the N lone pairs into the vacant p‐orbital at carbon (or a heavier Group 14 element center). These interactions are usually absent in the corresponding P‐substituted species, owing to the large barrier to planarization of phosphorus. However, judicious selection of the substituents at phosphorus has enabled the synthesis of a diphosphagermylene, [(Dipp)2P]2Ge, in which one of the P centers is planar (Dipp=2,6‐diisopropylphenyl). The planar nature of this P center and the correspondingly short P? Ge distance suggest a significant degree of P? Ge multiple bond character that is due to delocalization of the phosphorus lone pair into the vacant p‐orbital at germanium. DFT calculations support this proposition and NBO and AIM analyses are consistent with a Ge? P bond order greater than unity.  相似文献   

19.
The title compound, [Mn(NCS)2(C18H12N6)2(CH4O)2], con­tains a centrosymmetric octahedral MnII centre and three pairs of trans‐coordinating ligands. It is the first example of a mononuclear metal complex with the 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (tpt) ligand. Intermolecular π–π stacking of the planar tpt ligands, as well as hydrogen bonds between pyridyl N and methanol H atoms, results in the formation of a three‐dimensional network.  相似文献   

20.
The title compound, C21H19N7, is a poly­pyridine ligand that is suitable for assembling complex metal systems capable of photoinduced electron transfer. The solid‐state structure has been determined at room temperature by single‐crystal X‐ray diffraction. The mol­ecule is not flat and both the bis­(pyridyl)­triazole and the benzyl­id­ene­amine fragments show significant distortions from planarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号