首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have prepared two chiral Schiff base ligands, H2L1 and H2L2, and one achiral Schiff base ligand, H2L3, by treating 2,6‐diformyl‐4‐methylphenol separately with (R )‐1,2‐diaminopropane, (R )‐1,2‐diaminocyclohexane and 1,1′‐dimethylethylenediamine, in ethanolic medium, respectively. The complexes MnL1ClO4 ( 1 ), MnL2ClO4 ( 2 ), MnL3ClO4 ( 3 ), FeL1ClO4 ( 4 ), FeL2ClO4 ( 5 ) and FeL3ClO4 ( 6 ) have been obtained by reacting the ligands H2L1, H2L2 and H2L3 with manganese(III) perchlorate or iron(III) perchlorate in methanol. Circular dichroism studies suggest that ligands H2L1 and H2L2 and their corresponding complexes have asymmetric character. Complexes 1 – 6 have been used as homogeneous catalysts for epoxidation of alkenes. Manganese systems have been found to be much better than iron counterparts for alkene epoxidation, with 3 as the best catalyst among manganese systems and 6 as the best among iron systems. The order of their experimental catalytic efficiency has also been rationalized by theoretical calculations. We have observed higher enantiomeric excess product with catalysts 1 and 4 , so they were attached to surface‐modified magnetic nanoparticles to obtain two new magnetically separable nanocatalysts, Fe3O4@dopa@MnL1 and Fe3O4@dopa@FeL4. They have been characterized and their alkene epoxidation ability has been investigated. These catalysts can be easily recovered by magnetic separation and recycled several times without significant loss of catalytic activity. Hence our study focuses on the synthesis of a magnetically recoverable asymmetric nanocatalyst that finds applications in epoxidation of alkenes and at the same time can be recycled and reused.  相似文献   

2.
A simple protocol that uses [OsIII(OH)(H2O)(L ‐N4Me2)](PF6)2 ( 1 ; L ‐N4Me2=N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)pyridinophane) as a catalyst and H2O2 as a terminal oxidant for efficient cis‐1,2‐dihydroxylation of alkenes is presented. Unfunctionalized (or aliphatic) alkenes and alkenes/styrenes containing electron‐withdrawing groups are selectively oxidized to the corresponding vicinal diols in good to excellent yields (46–99 %). In the catalytic reactions, the stoichiometry of alkene:H2O2 is 1:1, and thus the oxidant efficiency is very high. For the dihydroxylation of cyclohexene, the catalytic amount of 1 can be reduced to 0.01 mol % to achieve a very high turnover number of 5500. The active oxidant is identified as the OsV(O)(OH) species ( 2 ), which is formed via the hydroperoxide adduct, an OsIII(OOH) species. The active oxidant 2 is successfully isolated and crystallographically characterized.  相似文献   

3.
A Rh‐catalyst system based on the asymmetric ligand tBu2PCH2P(o‐C6H4OMe)2 is reported that allows for the hydroacylation of challenging internal alkenes with β‐substituted aldehydes. Mechanistic studies point to the stabilizing role of both excess alkene and the OMe‐group.  相似文献   

4.
Absolute rate constants for the addition of the 2-hydroxy-2-propyl radical to 18 substituted alkenes (CH2 = CXY) were determined at (296 ± 1) K in 2-propanol by time-resolved electronspin-resonance spectroscopy. With alkene substitution the rate constants vary by more than 6 orders of magnitude. For 3,3-dimethyl-but-1-ene the temperature dependence is given by log k/M?1 · s?1 = 6.4 minus;; 19.1/Θ where Θ = 2.303 RT in kJ/mol?1. As shown by a good correlation with the alkene electron affinities, log k296/M?1 · s?1 = 6.46 + 1.71 · EA/eV (r = 0.930), 2-hydroxy-2-propyl is a very nucleophilic radical, and its addition rates are highly governed by polar effects. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Hydrogenolysis of the half‐sandwich penta‐arylcyclopentadienyl‐supported heavy alkaline‐earth‐metal alkyl complexes (CpAr)Ae[CH(SiMe3)2](S) (CpAr=C5Ar5, Ar=3,5‐iPr2‐C6H3; S=THF or DABCO) in hexane afforded the calcium, strontium, and barium metal–hydride complexes as the same dimers [(CpAr)Ae(μ‐H)(S)]2 (Ae=Ca, S=THF, 2‐Ca ; Ae=Sr, Ba, S=DABCO, 4‐Ae ), which were characterized by NMR spectroscopy and single‐crystal X‐ray analysis. 2‐Ca , 4‐Sr , and 4‐Ba catalyzed alkene hydrogenation under mild conditions (30 °C, 6 atm, 5 mol % cat.), with the activity increasing with the metal size. A variety of activated alkenes including tri‐ and tetra‐substituted olefins, semi‐activated alkene (Me3SiCH=CH2), and unactivated terminal alkene (1‐hexene) were evaluated.  相似文献   

6.
The stereoselective hydrogenation of alkynes to alkenes is an extremely useful transformation in synthetic chemistry. Despite numerous reports for the synthesis of Z‐alkenes, the hydrogenation of alkynes to give E‐alkenes is still not well resolved. In particular, selective preparation of both Z‐ and E‐alkenes by the same catalytic hydrogenation system using molecular H2 has rarely been reported. In this paper, a novel strategy of using simple alkenes as promoters for the HB(C6F5)2‐catalyzed metal‐free hydrogenation of alkynes was adopted. Significantly, both Z‐ and E‐alkenes can be furnished by hydrogenation with molecular H2 in high yields with excellent stereoselectivities. Further experimental and theoretical mechanistic studies suggest that interactions between H and F atoms of the alkene promoter, borane intermediate, and H2 play an essential role in promoting the hydrogenolysis reaction.  相似文献   

7.
Electrophilic additions of hydrogen halides to alkenes in the gas phase are investigated with a high‐level ab initio method, MP2/6‐311+G(3df,2p). Based on this, the interesting features of these reactions along the IRC routes are characterized by the molecular face (MF) theory. For an alkene at the initial state, if the representative electron density (ED) encoded on the molecular face (MF) of the Markovnikov (M) carbon atom (the carbon with more hydrogen atoms) is larger than that of the anti‐Markovnikov (AM) carbon atom (the carbon with fewer hydrogen atoms), the electrophilic addition reaction is predicted to proceed along the Markovnikov addition route; in the reverse situtation, the anti‐Markovnikov addition route would be slightly preferred. It is then demonstrated that for a series of alkenes, the difference between activation energies of Markovnikov and anti‐Markovnikov addition routes [ΔE#(M?AM)] has a good linear correlation with sign(KED)K2ED, where KED is characteristic of the electron density (ED) at the π region in the initial state of the alkenes. Interestingly, there is a good linear correlation between our sign (KED)K2ED and the absolute values of difference in the core ionization energy between M and AM carbon atoms obtained by others (L. J. Sæthre, T. D. Thomas, S. Svensson J. Chem. Soc. P2 1997 , 2, 749.) in terms of the experimental study. In addition, the spatial dynamic changing features of the MF faces and interesting pictures of the electron transfer are clearly shown during the course of the electrophilic addition reactions. These results indicate that not only regioselectivity, but also activation energy and reactivity correlate with the π charge distribution in the initial state of the alkenes for electrophilic addition reactions.  相似文献   

8.
The gas-phase reaction of ozone with eight alkenes including six 1,1-disubstituted alkenes has been investigated at ambient T (285–298 K) and p = 1 atm. of air. The reaction rate constants are, in units of 10−18 cm3 molecule−1 s−1, 9.50 ± 1.23 for 3-methyl-1-butane, 13.1. ± 1.8 for 2-methyl-1-pentene, 11.3 ± 3.2 for 2-methyl-1,3-butadiene (isoprene), 7.75 ± 1.08 for 2,3,3-trimethyl-1-butene, 3.02 ± 0.52 for 3-methyl-2-isopropyl-1-butene, 3.98 ± 0.43 for 3,4-diethyl-2-hexene, 1.39 ± 17 for 2,4,4-trimethyl-2-pentene, and >370 for (cis + trans)-3,4-dimethyl-3-hexene. For isoprene, results from this study and earlier literature data are consistent with: k (cm3 molecule−1 s−1) = 5.59 (+ 3.51, &minus 2.16) × 10−15 e(−3606±279/RT), n = 28, and R = 0.930. The reactivity of the other alkenes, six of which have not been studied before, is discussed in terms of alkyl substituent inductive and steric effects. For alkenes (except 1,1-disubstituted alkenes) that bear H, CH3, and C2H5 substituents, reactivity towards ozone is related to the alkene ionization potential: In k<(10−18 cm3 molecule−1 s−1) = (32.89 ± 1.84) − (3.09 ± 0.20) IP (eV), n = 12, and R = 0.979. This relationship overpredicts the reactivity of C≥3 1-alkenes, of 1,1-disubstituted alkenes, and of alkenes with bulky substituents, for which reactivity towards ozone is lower due to substituent steric effects. The atmospheric persistence of the alkenes studied is briefly discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The kinetic and thermodynamic parameters of degradation of doripenem were studied using a high‐performance liquid chromatography method. In dry air, the degradation of doripenem was a first‐order reaction depending on the substrate concentration. At increased relative air humidity, doripenem was degraded according to the autocatalysis kinetic model. The dependence ln k = f1/T) was described by the equations ln k = 5.10 ± 13.06 ? (7576 ± 4939)(1/T) in dry air and ln k = 46.70 ± 22.44 ? (19,959 ± 8031)(1/T) at 76.4% relative humidity (RH). The thermodynamic parameters Ea, ΔH≠a, and ΔS≠a of the degradation of doripenem were calculated. The dependence ln k = f (RH%) was described by the equation ln k = (0.155 ± 0.077) × 10?1 (RH%) ? (3.45 ± 21.8) × 10?10. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 722–728, 2012  相似文献   

10.
Absolute rate constants and their temperature dependencies were determined for the addition of hydroxymethyl radicals (CH2OH) to 20 mono- or 1,1-disubstituted alkenes (CH2 = CXY) in methanol by time-resolved electron spin resonance spectroscopy. With the alkene substituents the rate constants at 298 K (k298) vary from 180 M?1s?1 (ethyl vinylether) to 2.1 middot; 106 M?1s?1 (acrolein). The frequency factors obey log A/M?1s?1 = 8.1 ± 0.1, whereas the activation energies (Ea) range from 11.6 kJ/mol (methacrylonitrile) to 35.7 kJ/mol (ethyl vinylether). As shown by good correlations with the alkene electron affinities (EA), log k298/M?1s?1 = 5.57 + 1.53 · EA/eV (R2 = 0.820) and Ea = 15.86 ? 7.38 · EA/eV (R2 = 0.773), hydroxymethyl is a nucleophilic radical, and its addition rates are strongly influenced by polar effects. No apparent correlation was found between Ea or log k298 with the overall reaction enthalpy. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Iron-catalyzed isomerization of alkenes is reported using an iron(II) β-diketiminate pre-catalyst. The reaction proceeds with a catalytic amount of a hydride source, such as pinacol borane (HBpin) or ammonia borane (H3N⋅BH3). Reactivity with both allyl arenes and aliphatic alkenes has been studied. The catalytic mechanism was investigated by a variety of means, including deuteration studies, Density Functional Theory (DFT) and Electron Paramagnetic Resonance (EPR) spectroscopy. The data obtained support a pre-catalyst activation step that gives access to an η2-coordinated alkene FeI complex, followed by oxidative addition of the alkene to give an FeIII intermediate, which then undergoes reductive elimination to allow release of the isomerization product.  相似文献   

12.
Quantum chemical calculations using density functional theory with the TPSS+D3(BJ) and M06‐2X+D3(ABC) functionals have been carried out to understand the mechanisms of catalyst‐free hydrogermylation/hydrostannylation reactions between the two‐coordinate hydrido‐tetrylenes :E(H)(L+) (E=Ge or Sn, L+=N(Ar+)(SiiPr3); Ar+=C6H2{C(H)Ph2}2iPr‐2,6,4) and a range of unactivated terminal (C2H3R, R=H, Ph, or tBu) and cyclic [(CH)2(CH2)2(CH2)n, n=1, 2, or 4] alkenes. The calculations suggest that the addition reactions of the germylenes and stannylenes to the cyclic and acyclic alkenes occur as one‐step processes through formal [2+2] addition of the E?H fragment across the C?C π bond. The reactions have moderate barriers and are weakly exergonic. The steric bulk of the tetrylene amido groups has little influence on the activation barriers and on the reaction energies of the anti‐Markovnikov pathway, but the Markovnikov addition is clearly disfavored by the size of the substituents. The addition of the tetrylenes to the cyclic alkenes is less exergonic than the addition to the terminal alkenes, which agrees with the experimentally observed reversibility of the former reactions. The hydrogermylation reactions have lower activation energies and are more exergonic than the stannylene addition. An energy decomposition analysis of the transition state for the hydrogermylation of cyclohexene shows that the reaction takes place with simultaneous formation of the Ge?C and (Ge)H?C′ bonds. The dominant orbitals of the germylene are the σ‐type lone pair MO of Ge, which serves as a donor orbital, and the vacant p(π) MO of Ge, which acts as acceptor orbital for the π* and π MOs of the olefin. Inspection of the transition states of some selected reactions suggests that the differences between the activation energies come from a delicate balance between the deformation energies of the interacting species and their interaction energies.  相似文献   

13.
The catalytic activity of the N‐tailed (“biuret”) TAML (tetraamido macrocyclic ligand) activators [Fe{4‐XC6H3‐1,2‐( N COCMe2 N CO)2NR}Cl]2? ( 3 ; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me ( a ); NO2, Me ( b ); H, Ph ( c )] in the oxidative bleaching of Orange II dye by H2O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4‐XC6H3‐1,2‐( N COCMe2 N CO)2CMe2}OH2]? ( 1 ) and the more aggressive analogue [Fe(Me2C{CON(1,2‐C6H3‐4‐X) N CO}2)OH2]? ( 2 ). Catalysis by 3 of the reaction between H2O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kIkII[FeIII][S][H2O2]/(kI[H2O2]+kII[S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b > 3 a > 3 c . The pH dependency of kI and kII was investigated for 3 a . As with all TAML activators studied to‐date, bell‐shaped profiles were found for both rate constants. For kI, the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a . For kII, the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI?kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a – c were calculated using the general formula ln([S0]/[S])=(kII/ki)[FeIII]; here [FeIII], [S0], and [S] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X‐ray characterization of 3 c are also described.  相似文献   

14.
Direct cross‐coupling between alkenes/R‐H or alkenes/RXH is a dream reaction, especially without external oxidants. Inputting energy by photocatalysis and employing a cobalt catalyst as a two‐electron acceptor, a direct C−H/X−H cross‐coupling with H2 evolution has been achieved for C−O and C−N bond formation. A new radical alkenylation using alkene as the redox compound is presented. A wide range of aliphatic alcohols—even long chain alcohols—are tolerated well in this system, providing a new route to multi‐substituted enol ether derivatives using simple alkenes. Additionally, this protocol can also be used for N ‐vinylazole synthesis. Mechanistic insights reveal that the cobalt catalyst oxidizes the photocatalyst to revive the photocatalytic cycle.  相似文献   

15.
A kinetic study of the dodecanethiol‐catalyzed cis/trans isomerization of methyl oleate (cis‐ 2 ) without added initiator was performed by focusing on the initiation of the radical chain reaction. The reaction orders of the rate of isomerization were 2 and 0.5 for 1 and cis‐ 2 , respectively, and an overall kinetic isotope effect kH/kD of 2.8 was found. The initiation was shown to be a complex reaction. The electron‐donor/‐acceptor (EDA) complex of dodecanethiol ( 1 ) and cis‐ 2 formed in a pre‐equilibrium reacts with thiol 1 to give a stearyl and a sulfuranyl radical through molecule‐assisted homolysis (MAH) of the sulfur–hydrogen bond. Fragmentation of the latter gives the thiyl radical, which catalyzes the cis/trans isomerization. A computational study of the EDA complex, MAH reaction, and the sulfuranyl radical calculated that the activation energy of the isomerization was in good agreement with the experimental result of EA=82 kJ M ?1. Overall, the results may explain that the thermal generation of thiyl radicals without any initiator is responsible for many well‐known thermally initiated addition reactions of thiol compounds to alkenes and their respective polymerizations and for the low shelf‐life stability of cis‐unsaturated thiol compounds and of mixtures of alkenes and thiol compounds.  相似文献   

16.
Various arylboronic acids reacted with activated alkenes in the presence of [Ni(dppe)Br2], ZnCl2, and H2O in CH3CN at 80 °C to give the corresponding Mizoroki–Heck‐type addition products in good to excellent yields. Furthermore, 1 equivalent of the hydrogenation product of the activated alkene was also produced. By tuning the ligands of the nickel complexes and the reaction conditions, Michael‐type addition was achieved in a very selective manner. Thus, various p‐ and o‐substituted arylboronic acids or alkenylboronic acid reacted smoothly with activated alkenes in CH3CN at 80 °C for 12 h catalyzed by Ni(acac)2, P(o‐anisyl)3, and K2CO3 to give the corresponding Michael‐type addition products in excellent yields. However, for m‐substituted arylboronic acids, the yields of Michael‐type addition products are very low. The cause of this unusual meta‐substitution effect is not clear. By altering the solvent or phosphine ligand, the product yields for m‐substituted arylboronic acids were greatly improved. In contrast to previous results in the literature, the present catalytic reactions required water for Mizoroki–Heck‐type products and dry reaction conditions for Michael‐type addition products. Possible mechanistic pathways for both addition reactions are proposed.  相似文献   

17.
Temperature dependences of the relative reactivity of potassium aryloxides XC6H4O?K+ toward 2,4‐dinitrophenyl benzoate in 50 mol% dimethylformamide (DMF)–50 mol% H2O mixture have been studied using the competitive reactions technique. Correlation analyses of the relative rate constants kX/kH and differences in the activation parameters (ΔΔН and ΔΔS) of the competitive reactions have revealed the existence of two isokinetic series of the reactions of 2,4‐dinitrophenyl benzoate with potassium aryloxides with electron‐donating substituent (EDS) and electron‐withdrawing substituent (EWS), respectively. We have investigated the effect of the substituent X on the activation parameters for each isokinetic series and concluded that the mechanism of the reactions of 2,4‐dinitrophenyl benzoate with potassium aryloxides XC6H4O?K+ in 50 mol% DMF–50 mol% H2O mixture is the same as in DMF. Analysis of the obtained data with using the method of two‐dimensional reaction coordinate diagram leads to the conclusion that the variation of the solvent from DMF to 50 mol% DMF–50 mol% H2O mixture affects the reaction pathway. The rate constant kX for the reaction of 3‐nitrophenyl benzoate with potassium 4‐methoxyphenoxide and the relative rate constants kX/kH for the reaction of 3‐nitrophenyl benzoate with potassium aryloxides XC6H4O?K+ with EDS were measured in 50 mol% DMF–50 mol% H2O mixtures at 25°C, and it has been shown that the addition of water to DMF does not change the mechanism but slows down these reactions.  相似文献   

18.
Reliable methods for enantioselective cis‐dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis‐α‐[FeII(2‐Me2‐BQPN)(OTf)2], which bears a tetradentate N4 ligand (Me2‐BQPN=(R,R)‐N,N′‐dimethyl‐N,N′‐bis(2‐methylquinolin‐8‐yl)‐1,2‐diphenylethane‐1,2‐diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron‐deficient alkenes were efficiently oxidized to chiral cis‐diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2O2) as oxidant under mild conditions. Experimental studies (including 18O‐labeling, ESI‐MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis‐FeV(O)2 reaction intermediate as an active oxidant. This cis‐[FeII(chiral N4 ligand)]2+/H2O2 method could be a viable green alternative/complement to the existing OsO4‐based methods for asymmetric alkene dihydroxylation reactions.  相似文献   

19.
Films of linear and branched oligomer wires of Fe(tpy)2 (tpy=2,2′:6′,2′′‐terpyridine) were constructed on a gold‐electrode surface by the interfacial stepwise coordination method, in which a surface‐anchoring ligand, (tpy? C6H4N?NC6H4? S)2 ( 1 ), two bridging ligands, 1,4‐(tpy)2C6H4 ( 3 ) and 1,3,5‐(C?C? tpy)3C6H3 ( 4 ), and metal ions were used. The quantitative complexation of the ligands and FeII ions was monitored by electrochemical measurements in up to eight complexation cycles for linear oligomers of 3 and in up to four cycles for branched oligomers of 4 . STM observation of branched oligomers at low surface coverage showed an even distribution of nanodots of uniform size and shape, which suggests the quantitative formation of dendritic structures. The electron‐transport mechanism and kinetics for the redox reaction of the films of linear and branched oligomer wires were analyzed by potential‐step chronoamperometry (PSCA). The unique current‐versus‐time behavior observed under all conditions indicates that electron conduction occurs not by diffusional motion but by successive electron hopping between neighboring redox sites within a molecular wire. Redox conduction in a single molecular wire in a redox‐polymer film has not been reported previously. The analysis provided the rate constant for electron transfer between the electrode and the nearest redox‐complex moiety, k1 (s?1), as well as that for intrawire electron transfer between neighboring redox‐complex moieties, k2 (cm2 mol?1 s?1). The strong effect of the electrolyte concentration on both k1 and k2 indicates that the counterion motion limits the electron‐hopping rate at lower electrolyte concentrations. Analysis of the dependence of k1 and k2 on the potential gave intrinsic kinetic parameters without overpotential effects: k10=110 s?1, k20=2.6×1012 cm2 mol?1 s?1 for [n Fe 3 ], and k10=100 s?1, k20=4.1×1011 cm2 mol?1 s?1 for [n Fe 4 ] (n=number of complexation cycles).  相似文献   

20.
Second‐order rate constants (kN) have been determined spectrophotometrically for the reactions of 2,4‐dinitrophenyl X‐substituted benzoates ( 1 a – f ) and Y‐substituted phenyl benzoates ( 2 a – h ) with a series of alicyclic secondary amines in MeCN at 25.0±0.1 °C. The kN values are only slightly larger in MeCN than in H2O, although the amines studied are approximately 8 pKa units more basic in the aprotic solvent than in H2O. The Yukawa–Tsuno plot for the aminolysis of 1 a – f is linear, indicating that the electronic nature of the substituent X in the nonleaving group does not affect the rate‐determining step (RDS) or reaction mechanism. The Hammett correlation with σ? constants also exhibits good linearity with a large slope (ρY=3.54) for the reactions of 2 a – h with piperidine, implying that the leaving‐group departure occurs at the rate‐determining step. Aminolysis of 2,4‐dinitrophenyl benzoate ( 1 c ) results in a linear Brønsted‐type plot with a βnuc value of 0.40, suggesting that bond formation between the attacking amine and the carbonyl carbon atom of 1 c is little advanced in the transition state (TS). A concerted mechanism is proposed for the aminolysis of 1 a – f in MeCN. The medium change from H2O to MeCN appears to force the reaction to proceed concertedly by decreasing the stability of the zwitterionic tetrahedral intermediate (T±) in aprotic solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号