首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
《化学:亚洲杂志》2017,12(5):530-542
The seed‐assisted synthesis of zeolites without using organic structure‐directing agents (OSDAs) has enabled alternative routes to the simple, environmentally friendly and low‐cost production of industrially important zeolites. In this study, the successful seed‐assisted synthesis of MCM‐22 (MWW‐type) zeolite with an OSDA‐free gel is reported for the first time. MWW‐type zeolites are obtained by the addition of as‐synthesized MCM‐22 seeds prepared with hexamethyleneimine (HMI) into OSDA‐free Na‐aluminosilicate gels. Based on the results of XRD, ICP‐AES, NMR, N2 physisorption and NH3‐TPD, the product exhibited different features compared to those of the seeds. The H‐form product can serve as a catalyst in Friedel–Crafts alkylation reaction of anisole with 1‐phenylethanol, and its catalytic activity is comparable to the seeds. Furthermore, XRD, FE‐SEM, TG‐DTA, CHN, FT‐IR and NMR analyses of products and intermediates provide insights into the role of seeds and occluded HMI, the crystallization process, and key factors for achieving seed‐assisted synthesis of MWW‐type zeolites with an OSDA‐free gel system. The present results provide a new perspective for the economical and environmentally friendly production of MWW‐type zeolites.  相似文献   

2.
High aluminum content constitutes a major hurdle for the postsynthesis modification of hierarchical zeolites. A facile protocol comprising fluorination and sequential alkaline treatment is presented for the postsynthesis modification of hierarchical Al‐rich MFI zeolites. By virtue of this protocol, uniform intracrystalline mesoporosity is introduced in an Al‐rich MFI zeolite (Si/Al=14.3). The obtained hierarchical zeolites exhibit a significant mesopore size distribution, centered around 6 nm, and show improved conversions in catalytic cracking of bulky aromatic molecules. The fundamental implications of the fluorination–alkaline treatment protocol are related to the formation of F‐bearing tetrahedral aluminum species in the antecedent fluorination step, which alleviates the resistance of Al sites to the alkaline medium and causes Al?F complexation for regulated hydrolysis of the Al species during the alkaline treatment process. This top‐down protocol and the derived mechanistic understandings are expected to be applied in the synthesis of hierarchical Al‐rich zeolites with other framework topologies.  相似文献   

3.
Siliceous zeolites are ideally suited for emerging applications in gas separations, sensors, and the next generation of low‐k dielectric materials, but the use of fluoride in the synthesis significantly hinders their commercialization. Herein, we show that the dry gel conversion (DGC) technique can overcome this problem. Fluoride‐free synthesis of two siliceous zeolites—AMH‐4 (CHA‐type) and AMH‐5 (STT‐type), has been achieved for the first time using the method. Siliceous *BEA‐, MFI‐, and *MRE‐type zeolites have also been synthesized to obtain insights into the crystallization process. Charge‐balancing interactions between the inorganic cation, organic structure‐directing agent (OSDA), and Si?O? defects are found to be an essential aspect. We quantify this factor in terms of the “OSDA charge/silica ratio” of the as‐made zeolites and demonstrate that the DGC technique is broadly applicable and opens up new avenues for fluoride‐free siliceous zeolite synthesis.  相似文献   

4.
Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications, such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure‐directing agent to produce crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially viable methods of preparing zeolites often lead to the formation of impurities. Herein, we present organic‐free syntheses of two polymorphs of the small‐pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H2O relative to other light gases (e.g., H2, N2, CO2). Our findings refute prior theoretical studies postulating that GIS‐type zeolites are excellent materials for CO2 separation/sequestration. We also show that P2 is significantly more thermally stable than P1, which broadens the operating conditions for GIS‐type zeolites in commercial applications and opens new avenues for exploring their potential use in processes such as catalysis.  相似文献   

5.
Well-ordered cubic zeolites 4A were synthesised using sol–gel process in the presence of different silica and aluminum sources. The aluminum and silica sources determined whether or not zeolites were formed at precise silica/alumina mole ratio. Zeolites were formed only when the aluminum source was sodium aluminate, the silica source was fumed silica, colloidal silica or sodium metasilicate. Our findings indicated that the type of zeolite invariably obtained was 4A and SEM images indicated that the produced zeolites are cubic shaped crystals with planar surfaces and well-defined edges and sharp crystals. In turn, synthesis parameters are seen to have a significant effect in maximizing heavy metals uptake (for example Cu2+, Cr3+, Cd2+ and Ni2+) by synthesized zeolites. Zeolite 4A gave better heavy metal uptakes than amorphous or non-zeolite crystalline materials. This was attributed to higher ion-exchange capacity and higher BET specific surface area 445 m2/g and pore volume 0.141 cm3/g. The latter attribute possibly translates to greater accessibility of ion-exchange sites and selectivity towards metal type by this zeolite followed the sequence: Cu2+ > Cr3+ ≥ Cd2+ > Ni2+.  相似文献   

6.
Aluminosilicate zeolites are synthesized under hydrothermal conditions in a basic/alkaline medium in the pH range between 9 and 14. The synthesis of MFI-type zeolite in an acidic medium is presented. The critical parameter determining the zeolite formation in an acidic medium was found to be the isoelectric point (IEP) of gel particles. MFI-type zeolite was synthesized above the isoelectric point of the employed silica source, where the silica species exhibit a negative charge and the paradigm of zeolite formation based on the electrostatic interaction with the positively charged template is retained. No zeolite formation is observed below the isoelectric point of silica. The impact of aluminum on the zeolite formation is also studied. The results of this study will serve to extend the synthesis field of high silica zeolites to the acidic medium and thus open new opportunities to control the zeolite properties.  相似文献   

7.
《化学:亚洲杂志》2017,12(20):2711-2719
Three hierarchical porous zeolites (H‐*BEA, H‐MTW, and H‐*MRE) were successfully synthesized with the assistance of designed cationic surfactants under hydrothermal synthesis conditions. The as‐synthesized zeolite samples can be easily regulated by changing the number of long hydrophobic n ‐alkyl chains. Also, we investigated the relationship between the length of the surfactant and the formation of the microporous structure of the zeolite. Furthermore, the alkylation of benzene with propene was performed as a probe reaction to evaluate the catalytic performance of the synthesized hierarchical zeolites. The resulting materials were characterized by using a complementary combination of techniques, that is, X‐ray powder diffraction, N2 adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, 28Si and 27Al MAS NMR spectroscopies, thermogravimetric analysis, and computer simulation. These analysis results indicated that quaternary ammonium surfactants acted as organic structure‐directing agents (OSDAs) in the formation of these hierarchical zeolite samples, whether the surfactant had long hydrophobic tail groups or not. The simulation results indicated that the organic molecules with no long hydrophobic chain could lead to the synthesis of zeolite through charge control, and the hydrophobic molecules with long hydrophobic chains could form zeolites through orbital control. These hierarchical zeolites showed improved catalytic activity towards the industrially relevant alkylation of benzene with propene compared with conventional zeolites with the same frameworks. More importantly, the success of using quaternary ammonium surfactants with no hydrophobic n ‐alkyl tail group in the synthesis of hierarchically structured mesoporous zeolites provides a new pathway for the synthesis of hierarchical porous materials by a soft‐templating method.  相似文献   

8.
许中亮  肖霞  赵震  孙兵 《化学通报》2021,84(2):129-138
SAPO-34分子筛的制备方法及其合成因素是影响其晶体形貌、晶粒大小、酸性质和孔道结构等物化性质的重要因素,与分子筛的催化性能密切相关.本文对比分析了常规水热合成法、微波辅助合成法、干胶转化合成法和无溶剂合成法的优缺点,并重点介绍了模板剂、硅铝比、水铝比、硅源铝源和金属改性等制备参数对SAPO-34分子筛物化性质及催化...  相似文献   

9.
Zeolites have taken a leading position in petrochemical, fine, and bulk chemical industries due to their porous architecture, pore sizes, tunable acidity, and thermal stability. Various strategies of zeolites preparation, including template‐free, solvent‐free, and toxic mineral‐free strategies are summarized. Moreover, the zeolite synthesis using naturally occurring minerals and sustainable natural templates is also discussed, which involves the synthesis of nanocrystalline zeolites of different framework structures using plant‐based natural templates and biomass‐derived renewable chemicals. Overall this personal account provides the fundamentals of various sustainable synthetic strategies reported in the literature for the synthesis of zeolites with suitable examples that will be useful for the students and will motivate experienced researchers to develop various novel sustainable methods for the synthesis of zeolites and other inorganic materials of industrial relevance.  相似文献   

10.
Several zeolites, such as faujasite, mordenite, and ZSM-5, with various aluminum contents have been used to analyze the effect of aluminum or cation concentration (strength of electrostatic field) on hydrogen adsorption at low temperature. Irrespective of the zeolite structure, the adsorption capacity, isosteric heat of adsorption (-DeltaHads), surface coverage, and micropore occupancy increase with increasing aluminum content of a zeolite. Zeolites with a higher amount of aluminum favorably adsorb hydrogen at relatively low pressures. For zeolites with similar aluminum contents, the adsorption capacity, isosteric heat of adsorption, surface coverage, and micropore occupancy are in the order of mordenite>ZSM-5>faujasite, probably due to differing pore sizes and the presence or absence of pore intersections. This work demonstrates that zeolites with strong electrostatic fields and narrow pores without intersections are beneficial for high hydrogen uptake.  相似文献   

11.
NaA,MAP和MAX高铝沸石的结构定向及其转晶   总被引:2,自引:0,他引:2  
本文根据不同沸石的结构特点及其在晶化动力学上的差异,由化学组成相近的硅铝凝胶混合物(投料Si/Al比约为1)定向合成出具有不同骨架结构的高铝沸石—NaA,MAP和MAX。考察了沸石晶化过程中晶化导向剂、晶种以及金属阳离子在合成高铝沸石的结构导向作用以及上述三种高铝沸石间的转晶规律。同时本文首次发现了MAP沸石的“室温固相转晶”现象。  相似文献   

12.
Syntheses routes for the conversion of autoclaved aerated concrete (AAC) waste into aluminosilicate zeolites like LTA and related phases were developed. The procedures always started with leaching steps of the pure AAC waste by combinations of strong alkaline (NaOH) and mild acid (citric acid) treatments, before the real crystallization process was performed separately under addition of sodium aluminate. All products were characterized by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) combined with energy dispersive X‐ray analysis (EDX‐analysis) and Fourier‐transform infrared spectroscopy (FTIR). Zeolites LTA and related phases basic sodalite (SOD), hydrosodalite (SOD), cancrinite (CAN) and an intermediate phase between SOD and CAN were observed. Depending on the preparation route tailor made synthesis of pure phase zeolite LTA with crystal sizes up to 5 μm was worked out. In addition to syntheses procedures important properties of the zeolites were discussed with respect to the treatment procedure of AAC. It is shown, that the special synthesis pathway is not only responsible for the product composition and formation of a certain structure type but also exhibits a strong influence on the crystallinity, crystal size, and morphology. The water sorption capacity and the hydrothermal stability of the products were selected for those further investigations. Whereas adequate water sorption capacity up to 272 mg · g–1 were measured for zeolites LTA obtained from two different reaction routes, limited hydrothermal stabilities were revealed for other products. Under the conditions of strong hydrothermal treatment at a temperature of 473 K for 72 h, a more or less extended phase transformation into ANA‐Type zeolites occurred. This process was least extensive for pure phase zeolite LTA obtained from the alkaline solution of AAC leaching.  相似文献   

13.
Zeolites with uniform micropores are important shape-selective catalysts. However, the external acid sites of zeolites have a negative impact on shape-selective catalysis, and the microporosity may lead to serious diffusion limitation. Herein, we report on the direct synthesis of hierarchical hollow STW-type zeolite single crystals with a siliceous exterior. In an alkalinous fluoride medium, the nucleation of highly siliceous STW zeolites takes place first, and the nanocrystals are preferentially aligned on the outer surface of the gel agglomerates to grow into single crystalline shells upon crystallization. The lagged crystallization of the internal Al-rich amorphous gels onto the inner surface of nanocrystalline zeolite shells leads to the formation of hollow cavities in the core of the zeolite crystals. The hollow zeolite single crystals possess a low-to-high aluminum gradient from the surface to the core, resulting in an intrinsic inert external surface, and exhibit superior catalytic performance in toluene methylation reactions.  相似文献   

14.
Extra‐large‐pore zeolites for processing large molecules have long been sought after by both the academia and industry. However, the synthesis of these materials, particularly extra‐large‐pore pure silica zeolites, remains a big challenge. Herein we report the synthesis of a new extra‐large‐pore silica zeolite, designated NUD‐6, by using an easily synthesized aromatic organic cation as structure‐directing agent. NUD‐6 possesses an intersecting 16×8×8‐membered ring pore channel system constructed by four‐connected (Q4) and unusual three‐connected (Q3) silicon species. The organic cations in NUD‐6 can be removed in nitric acid to yield a porous material with high surface area and pore volume. The synthesis of NUD‐6 presents a feasible means to prepare extra‐large pore silica zeolites by using assembled aromatic organic cations as structure‐directing agents.  相似文献   

15.
The development of inorganic frameworks with extra‐large pores (larger than 12‐membered rings) has attracted considerable attention because of their potential applications in catalysis, the separation of large molecules, and so forth. We herein report the synthesis of the new extra‐large‐pore zeolite NUD‐2 by using the supramolecular self‐assembly of simple aromatic organic cations as structure‐directing agents (SDAs). NUD‐2 is a high‐silicon‐content germanosilicate with interconnecting 14×10‐membered‐ring channels. The SDAs in NUD‐2 can be removed by calcination in air at 550 °C to yield permanent pores with a BET surface area of 500 m2g?1. Both germanium and organic cations in NUD‐2 can also be removed by treatment with acid at lower temperature, thus not only affording recycling of germanium and SDAs, but also providing a highly stable siliceous zeolite. In addition, aluminum ions can be incorporated into the framework of NUD‐2. The NUD‐2 structure is yet another extra‐large‐pore zeolite synthesized by using the supramolecular self‐assembling templating approach, thus demonstrating that this approach is a general and applicable strategy for synthesis of new large‐ and extra‐large‐pore zeolites.  相似文献   

16.
The isomerization of o‐xylene, a prototypical example of shape‐selective catalysis by zeolites, was investigated on hierarchical porous ZSM‐5. Extensive intracrystalline mesoporosity in ZSM‐5 was introduced by controlled silicon leaching with NaOH. In addition to the development of secondary porosity, the treatment also induced substantial aluminum redistribution, increasing the density of Lewis acid sites located at the external surface of the crystals. However, the strength of the remaining Brønsted sites was not changed. The mesoporous zeolite displayed a higher o‐xylene conversion than its parent, owing to the reduced diffusion limitations. However, the selectivity to p‐xylene decreased, and fast deactivation due to coking occurred. This is mainly due to the deleterious effect of acidity at the substantially increased external surface and near the pore mouths. A consecutive mild HCl washing of the hierarchical zeolite proved effective to increase the p‐xylene selectivity and reduce the deactivation rate. The HCl‐washed hierarchical ZSM‐5 displayed an approximately twofold increase in p‐xylene yield compared to the purely microporous zeolite. The reaction was followed by operando infrared spectroscopy to simultaneously monitor the catalytic performance and the buildup of carbonaceous deposits on the surface. Our results show that the interplay between activity, selectivity, and stability in modified zeolites can be optimized by relatively simple post‐synthesis treatments, such as base leaching (introduction of mesoporosity) and acid washing (surface acidity modification).  相似文献   

17.
The synthesis of Faujasite‐type zeolites with high purity has been successfully performed from Tunisian kaolinite and the effects of different crystallization parameters on the final products were widely investigated. The alkaline fusion of kaolinite followed by hydrothermal treatment lead to zeolite NaX synthesis whereas the classic hydrothermal transformation of metakaolinite produces NaY zeolite. The results show that an increase in the synthesis temperature and time has improved the crystallization process of the zeolite NaX whereas the SiO2/Al2O3 and the Na2O/SiO2 molar ratios were the key parameters to obtain a pure zeolite NaY. The highest specific surface areas obtained with the optimal crystallization conditions were 554 m2 g?1 and 592 m2 g?1 for respectively NaX and NaY zeolites. The basic properties of NaX and NaY zeolites were explored in the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate at 140 °C as a test reaction in the absence of solvent. The influence of ion exchange with cesium cation on the catalytic activity of prepared catalysts was also investigated. It was found that the NaX provided higher activity than that of NaY catalyst due to its lower Si/Al ratio whereas a cesium exchange conferred higher basicity to the prepared Na‐faujasite.  相似文献   

18.
A novel structural coding approach combining structure solution, prediction, and the targeted synthesis of new zeolites with expanding complexity and embedded isoreticular structures was recently proposed. Using this approach, the structures of two new zeolites in the RHO family, PST‐20 and PST‐25, were predicted and synthesized. Herein, by extending this approach, the next two higher generation members of this family, PST‐26 and PST‐28, have been predicted and synthesized. These two zeolites have much larger unit cell volumes (422 655 Å3 and 614 912 Å3, respectively) than those of the lower generations. Their crystallization was confirmed by a combination of both powder X‐ray and electron diffraction techniques. Aluminate and water concentrations in the synthetic mixture were found to be the two most critical factors influencing the structural expansion of embedded isoreticular zeolites under the synthetic conditions studied herein.  相似文献   

19.
Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag+, Zn2+, and Cu2+ ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag+ ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag+, Zn2+, and Cu2+ ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.  相似文献   

20.
A metal–organic framework (MOF)‐based catalyst, chromium hydroxide/MIL‐101(Cr), was prepared by a one‐pot synthesis method. The combination of chromium hydroxide particles on and within Lewis acidic MIL‐101 accomplishes highly selective conversion of glucose to fructose in the presence of ethanol, matching the performance of optimized Sn‐containing Lewis acidic zeolites. Differently from zeolites, NMR spectroscopy studies with isotopically labeled molecules demonstrate that isomerization of glucose to fructose on this catalyst, proceeds predominantly via a proton transfer mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号