首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of 1,3-oxazoles from symmetrical and unsymmetrical alkynes was realized by an iodonium cation-pool electrolysis of I2 in acetonitrile with a well-defined water content. Mechanistic investigations suggest that the alkyne reacts with the acetonitrile-stabilized I+ ions, followed by a Ritter-type reaction of the solvent to a nitrilium ion, which is then attacked by water. The ring closure to the 1,3-oxazoles released molecular iodine, which was visible by the naked eye. Also, some unsymmetrical internal alkynes were tested and a regioselective formation of a single isomer was determined by two-dimensional NMR experiments.  相似文献   

2.
Recently, we developed a direct method to oxidatively convert primary nitroalkanes into amides that entailed mixing an iodonium source with an amine, base, and oxygen. Herein, we systematically investigated the mechanism and likely intermediates of such methods. We conclude that an amine–iodonium complex first forms through N?halogen bonding. This complex reacts with aci‐nitronates to give both α‐iodo‐ and α,α‐diiodonitroalkanes, which can act as alternative sources of electrophilic iodine and also generate an extra equimolar amount of I+ under O2. In particular, evidence supports α,α‐diiodonitroalkane intermediates reacting with molecular oxygen to form a peroxy adduct; alternatively, these tetrahedral intermediates rearrange anaerobically to form a cleavable nitrite ester. In either case, activated esters are proposed to form that eventually reacts with nucleophilic amines in a traditional fashion.  相似文献   

3.
Compounds with highly coordinated, polyvalent main-group elements represent an interesting alternative to the many well-known transition-metal complexes. Among the oldest and best known stable examples of such organic molecules are the iodine(III) compounds. Diaryliodonium species, Ar2IX, for example, have been known for over a hundred years and play an important role in lithography. Likewise, acetylenes and olefins are among the oldest, most important, and most valuable compounds in chemistry. Besides simple hydrocarbon alkenes and alkynes, numerous functionalized derivatives are also known and widely employed in organic chemistry. Despite the ubiquity and prominance of both IIII species and olefins and acetylenes, the combination of these two types of functional groups in a single molecular unit, namely compounds with polyvalent iodine and at least one alkyne or olefin residue, was unknown until recently. The successful preparations of simple alkynyl- and alkenyl-(phenyl)iodonium species during the 1980s has resulted in a renaissance in both acetylene and IIII chemistry. These alkynyliodonium compounds readily undergo nucleophilic substitution on the alkyne moiety (SN-A reactions) which are difficult with other substrates. The application of a wide variety of nucleophiles in this reaction resulted in diverse functionalized alkynes including previously unknown acetylenic carboxylates, sulfonates, and phosphates. These are excellent substrates for cycloaddition reactions as well as numerous other interesting chemical transformations.  相似文献   

4.
The β‐Z selectivity in the hydrosilylation of terminal alkynes has been hitherto explained by introduction of isomerisation steps in classical mechanisms. DFT calculations and experimental observations on the system [M(I)2{κ‐C,C,O,O‐(bis‐NHC)}]BF4 (M=Ir ( 3 a ), Rh ( 3 b ); bis‐NHC=methylenebis(N‐2‐methoxyethyl)imidazole‐2‐ylidene) support a new mechanism, alternative to classical postulations, based on an outer‐sphere model. Heterolytic splitting of the silane molecule by the metal centre and acetone (solvent) affords a metal hydride and the oxocarbenium ion [R3Si? O(CH3)2]+, which reacts with the corresponding alkyne in solution to give the silylation product [R3Si? CH?C? R]+. Thus, acetone acts as a silane shuttle by transferring the silyl moiety from the silane to the alkyne. Finally, nucleophilic attack of the hydrido ligand over [R3Si? CH?C? R]+ affords selectively the β‐(Z)‐vinylsilane. The β‐Z selectivity is explained on the grounds of the steric interaction between the silyl moiety and the ligand system resulting from the geometry of the approach that leads to β‐(E)‐vinylsilanes.  相似文献   

5.
A combination of fluorobenziodoxole (FBX) and BF3 ? OEt2 in cyclopentyl methyl ether promotes regio‐ and stereoselective addition of benziodoxole and methoxy groups to alkynes. This difunctionalization reaction tolerates a variety of functionalized internal and terminal alkynes to afford trans‐β‐alkoxyvinylbenziodoxoles, which represent versatile precursors to stereochemically well‐defined multisubstituted vinyl ethers. The reaction is proposed to involve cleavage of the I?F bond of FBX by BF3, followed by electrophilic activation of the alkyne by the resulting cationic IIII species that triggers the nucleophilic addition of the ethereal oxygen.  相似文献   

6.
The reactivity of an exemplary ruthenium(II)–azido complex towards non‐activated, electron‐deficient, and towards strain‐activated alkynes at room temperature and low millimolar azide and alkyne concentrations has been investigated. Non‐activated terminal and internal alkynes failed to react under such conditions, even under copper(I) catalysis conditions. In contrast, as expected, rapid cycloaddition was observed with electron‐deficient dimethyl acetylenedicarboxylate (DMAD) as the dipolarophile. Since DMAD and related propargylic esters are excellent Michael acceptors and thus unsuitable for biological applications, we investigated the reactivity of the azido complex towards cycloaddition with derivatives of cyclooctyne (OCT), bicyclo[6.1.0]non‐4‐yne (BCN), and azadibenzocyclooctyne (ADIBO). While no reaction could be observed in the case of the less strained cyclooctyne OCT, the highly strained cyclooctynes BCN and ADIBO readily reacted with the azido complex, providing the corresponding stable triazolato complexes, which were amenable to purification by conventional silica gel column chromatography. An X‐ray crystal structure of an ADIBO cycloadduct was obtained and verified that the formed 1,2,3‐triazolato ligand coordinates the metal center through the central N2 atom. Importantly, the determined second‐order rate constant for the ADIBO cycloaddition with the azido complex (k2=6.9 × 10?2 M ?1 s?1) is comparable to the rate determined for the ADIBO cycloaddition with organic benzyl azide (k2=4.0 × 10?1 M ?1 s?1). Our results demonstrate that it is possible to transfer the concept of strain‐promoted azide–alkyne cycloaddition (SPAAC) from purely organic azides to metal‐coordinated azido ligands. The favorable reaction kinetics for the ADIBO‐azido‐ligand cycloaddition and the well‐proven bioorthogonality of strain‐activated alkynes should pave the way for applications in living biological systems.  相似文献   

7.
An efficient iodine‐mediated regioselective tandem approach for the synthesis of symmetric and asymmetric iodo‐substituted indenes and stereoselective cyclopenta [b]pyridine/thiophenes from easily accessible enediynes that proceeds by in situ formation of an iodonium intermediate followed by a regioselective 5‐endo‐dig cyclization has been described. The intramolecular electrophilic iodocyclization was selectively triggered by a distribution of electronic density along the alkyne bond. Subsequently, the iodo‐substituted indenes were diversified by employing palladium‐catalyzed cross‐coupling reactions and the coupled products were further confirmed by X‐ray crystallographic studies.  相似文献   

8.
The synergistic Ag+/X2 system (X=Cl, Br, I) is a very strong, but ill‐defined oxidant—more powerful than X2 or Ag+ alone. Intermediates for its action may include [Agm(X2)n]m+ complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: ( A )Ag‐I2‐Ag( A ), [Ag2(I2)4]2+( A ?)2 and [Ag2(I2)6]2+( A ?)2?(I2)x≈0.65 form by reaction of Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) with diiodine (single crystal/powder XRD, Raman spectra and quantum‐mechanical calculations). The molecular ( A )Ag‐I2‐Ag( A ) is ideally set up to act as a 2 e? oxidant with stoichiometric formation of 2 AgI and 2 A ?. Preliminary reactivity tests proved this ( A )Ag‐I2‐Ag( A ) starting material to oxidize n‐C5H12, C3H8, CH2Cl2, P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that ( A )Ag‐I2‐Ag( A ) will serve as an easily in bulk accessible, well‐defined, and very potent oxidant with multiple applications.  相似文献   

9.
The synergistic Ag+/X2 system (X=Cl, Br, I) is a very strong, but ill‐defined oxidant—more powerful than X2 or Ag+ alone. Intermediates for its action may include [Agm(X2)n]m+ complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: ( A )Ag‐I2‐Ag( A ), [Ag2(I2)4]2+( A )2 and [Ag2(I2)6]2+( A )2⋅(I2)x≈0.65 form by reaction of Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) with diiodine (single crystal/powder XRD, Raman spectra and quantum‐mechanical calculations). The molecular ( A )Ag‐I2‐Ag( A ) is ideally set up to act as a 2 e oxidant with stoichiometric formation of 2 AgI and 2 A . Preliminary reactivity tests proved this ( A )Ag‐I2‐Ag( A ) starting material to oxidize n‐C5H12, C3H8, CH2Cl2, P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that ( A )Ag‐I2‐Ag( A ) will serve as an easily in bulk accessible, well‐defined, and very potent oxidant with multiple applications.  相似文献   

10.
The consequences of extremely high steric loading have been probed for late transition metal complexes featuring the expanded ring N‐heterocyclic carbene 6‐Dipp. The reluctance of this ligand to form 2:1 complexes with d‐block metals (rationalised on the basis of its percentage buried volume, % Vbur, of 50.8 %) leads to C?H and C?N bond activation processes driven by attack at the backbone β‐CH2 unit. In the presence of IrI (or indeed H+) the net result is the formation of an allyl formamidine fragment, while AuI brings about an additional ring (re‐)closure step via nucleophilic attack at the coordinated alkene. The net transformation of 6‐Dipp in the presence of [(6‐Dipp)Au]+ represents to our knowledge the first example of backbone C?H activation of a saturated N‐heterocyclic carbene, proceeding in this case via a mechanism which involves free carbene in addition to the AuI centre.  相似文献   

11.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

12.
《化学:亚洲杂志》2017,12(9):1013-1019
Apart from sensing and imaging, luminogens with aggregation‐induced emission (AIE) are also interesting for photosensitizing. The photosensitizing behavior and bacteria‐killing performance of a pyridinium‐substituted tetraphenylethylene with an alkyne group ( TPE‐A‐Py+ ) is reported herein. Interestingly, TPE‐A‐Py+ exhibits higher photosensitizing efficiency than TPE‐Py+ (without alkyne group) when I was used as a counteranion. This is well explained by the fact that the ΔΕ ST between the excited singlet state (S 1) and triplet state (T 1) was lower for TPE‐A‐Py+ than for TPE‐Py+ , according to theoretical calculations. Moreover, replacement of I with other anions (PF6, N(SO2CF3)2 and BPh4) led to a decrease of photosensitizing efficiency for TPE‐A‐Py+ . Notably, TPE‐A‐Py+ could be used as an efficient photosensitizer to photo‐inactivate ampicillin‐resistant (ampr) E. coli at low concentration under white‐light irradiation very quickly.  相似文献   

13.
A new family of cationic ligands, N‐alkyl/aryl pyridiniophosphines, has been synthesized through a short, scalable, and highly modular route. Evaluation of their electronic properties evidenced weak σ‐donor and quite strong π‐acceptor character when used as ancillary ligands. These attributes confer a substantially enhanced π‐acidity to the PtII and AuI complexes thereof derived and, as result, they depict an improved ability to activate alkynes towards nucleophilic attack. This superior performance has been demonstrated along several mechanistically diverse PtII‐ and AuI‐catalyzed transformations.  相似文献   

14.
采用缓慢挥发溶剂的方法合成了硫原子桥联芳基取代四硫富瓦烯(Ar-S-TTF)与碘的3种电荷转移复合物(1)(I3)·I2、(2)(I5)·I2和(32+)(I32,采用单晶X射线衍射、紫外可见光谱、循环伏安对其进行了表征。复合物(1)(I3)·I2C2/c空间群,1呈椅式构型。化合物1与碘之间在溶液中和复合物中电荷转移一致。复合物(2)(I5)·I2P1空间群,2呈椅式构型。复合物(32+)(I32Pbca空间群,32+呈独特的平面构型。化合物23与碘之间在溶液中和复合物中呈现不同的电荷转移。复合物中聚碘阴离子呈现不同的堆积结构:由I3-或I5-/I2组成的一维链状和I3-/I2组成的二维网格状。  相似文献   

15.
Platinum(0) Complexes with Amino‐Substituted Alkynes: Novel Organometallic Building Blocks for Supramolecular Architectures and “Crystal Engineering” Homoleptic Bis(alkyne)platinum(0) compounds containing either NH2‐ or NH2‐/OH‐substituents are formed by reaction of Pt(cod)2 with alkynes as stable compounds. They can be used as variable building blocks for supramolecular networks. The crystal structure analyses of Bis(2‐amino‐2,5dimethyl‐5‐hydroxy‐hex‐3‐yne)platinum(0) ( 1 ) and of Bis(1(3‐amino‐3‐methyl‐but‐1‐inyl)‐cyclohexane‐1‐ol)platinum(0) ( 2 ) exhibit that the low‐valent Pt atom is tetrahedrally surrounded by the four sp‐hybridizated carbonatoms of the alkynes. Despite the fact that the bond lengths and ‐angles of the PtC4 units are equal, the supramolecular structures are different. While in 1 polymer strands are formed in which the bis(alkyne)‐Pt0 units are connected by (OH)2(NH2)2‐ tetrahedrons, 2 yields only a dimer containing a network of four OH‐ and two NH2‐groups. Platinum(0) complexes with cationic alkynes bearing ammonium substituents can be isolated as thermal stable compounds. The X‐ray structures of [Cl( FH +)Pt(cod)]4 ( 8 ) reveals that four molecular units form a cube with both four NH3+ groups and Cl at the corners connected by hydrogen bridges. In the bis(alkyne)Pt0 complex [Cl1.5( FH +)1.5( F )0.5Pt] ( 9 ) only 1,33 of two NH2 groups are protonated and a hydrogen bridged network connects four bis(alkyne)Pt0 units (cod: cycloocta‐1.5‐diene, F : 1‐(trimethylsilylethinyl)‐1‐amino‐cyclohexane).  相似文献   

16.
The current work describes the synthesis and full characterization of zerovalent nickel complexes of the type [(dippe)Ni(η2C,C‐Fn‐alkyne)] (dippe=1,2‐bis(di‐isopropylphosphino‐ethane), Fn‐alkyne=fluorinated aromatic alkyne, n=1, 3, 5; 3a , 3b , 3c ) and [{(dippe)Ni}22C,C‐Fn‐alkyne)] ( 4 ). Reactions with complexes 3a , 3b , 3c , and water as the hydrogen source, yield selective semihydrogenation of the bound alkyne to the corresponding alkene, accompanied by partial hydrodefluorination of the aromatic ring. Different alkynes were tested; on using the alkyne with five fluorine atoms over the aromatic ring, partial defluorination was achieved under the mildest reaction conditions, followed in reactivity by the alkyne with three fluorine atoms. The alkyne with only one fluorine atom was barely defluorinated. The use of triethylsilane as a sacrificial hydride source resulted in an overall increase in reactivity towards defluorination.  相似文献   

17.
The mechanism of the [(Cp*MCl2)2] (M=Rh, Ir)‐catalyzed oxidative annulation reaction of isoquinolones with alkynes was investigated in detail. In the first acetate‐assisted C? H‐activation process (cyclometalated step) and the subsequent mono‐alkyne insertion into the M? C bonds of the cyclometalated compounds, both Rh and Ir complexes participated well. However, the desired final products, dibenzo[a,g]quinolizin‐8‐one derivatives, were only formed in high yield when the Rh species participated in the final oxidative coupling of the C? N bond. Moreover, a RhI sandwich intermediate was isolated during this transformation. The iridium complexes were found to be inactive in the oxidative coupling processes. All of the relevant intermediates were fully characterized and determined by single‐crystal X‐ray diffraction analysis. Based on this mechanistic study, a RhIII→RhI→RhIII catalytic cycle was proposed for this reaction.  相似文献   

18.
The novel compound bis(1,4,7,10‐tetraoxa­cyclo­do­decane)­cadmium(II) decaiodide, [Cd(C8H16O4)2]I10, contains the [Cd(12‐crown‐4)2]2+ complex cation, triiodide ions and iodine mol­ecules. Two triiodide ions and two iodine mol­ecules form isolated twisted I102? rings. The geometry of the complex cation is as expected, e.g.d(Cd—O) = 2.366 (4) and 2.394 (4) Å.  相似文献   

19.
An efficient method for the synthesis of thiazolidine-2-thiones is described via regiospecific iodocyclization of an allyl amine, carbon disulfide, and iodine. Dehydrohalogenation of the iodo-derivatives gives thiazole-2(3H)-thiones. In addition, nucleophilic substitution of the iodine in the products is accomplished using NaN3, thiophenol, or dithiocarbamate.  相似文献   

20.
Although series of N1, N1‐dimethyl‐N2‐arylformamidines and of 1,1,3,3‐tetraalkyl‐2‐arylguanidines are structurally analogous and similar electron‐ionization mass spectral fragmentation may be expected, they display important differences in the favored routes of fragmentation and consequently in substituent effects on ion abundances. In the case of formamidines, the cyclization‐elimination process (initiated by nucleophilic attack of the N‐amino atom on the 2‐position of the phenyl ring) and formation of the cyclic benzimidazolium [M‐H]+ ions dominates, whereas the loss of the NR2 group is more favored for guanidines. In order to gain information on the most probable structures of the principal fragments, quantum‐chemical calculations were performed on a selected set. A good linear relation between log{I[M‐H]+I [M]+?} and σR+ constants of substituent at para position in the phenyl ring occurs solely for formamidines (r = 0.989). In the case of guanidines, this relation is not significant (r = 0.659). A good linear relation is found between log{I[M‐NMe2]+/I [M]+?} and σp+ constants (r = 0.993). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号