首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two unique organic–inorganic hybrid polyoxometalates constructed from Preyssler‐type [Na(H2O)P5W30O110]14? ({P5W30}) subunits and TM/Ln–carboxylate–Ln connectors (TM=transition metal, Ln=lanthanide), KNa7[{Sm6Mn(μ‐H2O)2(OCH2COO)7(H2O)18}{Na(H2O)P5W30O110}] ? 22 H2O ( 1 ) and K4[{Sm4Cu2(gly)2(ox)(H2O)24}{NaP5W30O110}]Cl2 ? 25 H2O ( 2 ; gly=glycine, ox=oxalate) have been hydrothermally synthesized and characterized by elemental analyses, IR spectra, UV/Vis‐NIR spectra, thermogravimetric analyses, power X‐ray diffraction, and single‐crystal X‐ray diffraction. Compound 1 displays one interesting 3D framework built by three types of subunits, {P5W30}, [Sm2Mn(μ‐H2O)2(OCH2COO)2(H2O)5]4+, and [Sm4(OCH2COO)5 (H2O)13]2+, whereas 2 also manifests the other intriguing 3D architecture created by three types of subunits, {P5W30}, [SmCu(gly)(H2O)8]4+, and [Sm2(ox)(H2O)8]4+. To our knowledge, 1 and 2 are the first 3D frameworks that contain {P5W30} units and TM/Ln–carboxylate–Ln connectors. The fluorescent properties of 1 and 2 have been investigated.  相似文献   

2.
A new class of hexameric Ln12‐containing 60‐tungstogermanates, [Na(H2O)6?Eu12(OH)12(H2O)18Ge2(GeW10O38)6]39? ( Eu12 ), [Na(H2O)6?Gd12(OH)6(H2O)24Ge(GeW10O38)6]37? ( Gd12 ), and [(H2O)6?Dy12(H2O)24(GeW10O38)6]36? ( Dy12 ), comprising six di‐Ln‐embedded {β(4,11)‐GeW10} subunits was prepared by reaction of [α‐GeW9O34]10? with LnIII ions in weakly acidic (pH 5) aqueous medium. Depending on the size of the LnIII ion, the assemblies feature selective capture of two (for Eu12 ), one (for Gd12 ), or zero (for Dy12 ) extra GeIV ions. The selective encapsulation of a cationic sodium hexaaqua complex [Na(H2O)6]+ was observed for Eu12 and Gd12 , whereas Dy12 incorporates a neutral, distorted‐octahedral (H2O)6 cluster. The three compounds were characterized by single‐crystal XRD, ESI‐MS, photoluminescence, and magnetic studies. Dy12 was shown to be a single‐molecule magnet.  相似文献   

3.
Reaction of mid‐ to late lanthanide ions with GeO2 and Na2WO4 in NaOAc buffer results in a library of [Ln2(GeW10O38)]6? clusters ( Ln2 ), which consist of dilacunary Keggin fragments stabilized by the insertion of 4f atoms in the vacant sites and show the ability to undergo cation‐directed self‐assembly processes. In the presence of Na+, two β‐ Ln2 subunits assemble by means of Ln‐O(WO5)‐Ln bridges to form the chiral [Ln4(H2O)6(β‐GeW10O38)2]12? dimeric anions (ββ‐ Ln4 , Ln=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). When Cs+ is present, two Ln4 ‐like dimers further assemble into the [{Ln4(H2O)5(GeW10O38)2}2]24? species ( Ln8 , Ln=Ho, Er, Tm, Yb, Lu). Two types of tetramers coexist in the solid state: One shows a full ββ‐ Ln8 architecture, whereas the other one is a mixed αβ‐ Ln8 assembly in which each β‐subunit is linked to its corresponding α‐ Ln2 derivative. Regardless of differences in isomeric forms and the relative arrangement of Ln2 subunits, all anions display virtually identical {Ln4} cores as a common structural feature. A combination of ESI mass spectrometry and 183W NMR spectroscopy experiments indicates that Ln8 tetramers fragment into Ln4 dimers upon dissolution, which undergo partial dissociation into Ln2 monomers and slow dimer/monomer equilibration. This is most likely followed by β‐to‐α isomerization of Ln2 clusters with consequent reassembly, as indicated by isolation of three additional αα‐ Ln4 derivatives. Magnetic and photoluminescence properties in the Na ‐ββ‐ Ln4 series are also discussed.  相似文献   

4.
The first series of niobium–tungsten–lanthanide (Nb‐W‐Ln) heterometallic polyoxometalates {Ln12W12O36(H2O)24(Nb6O19)12} (Ln=Y, La, Sm, Eu, Yb) have been obtained, which are comprised of giant cluster‐in‐cluster‐like ({Ln12W12}‐in‐{Nb72}) structures built from 12 hexaniobate {Nb6O19} clusters gathered together by a rare 24‐nuclearity sodalite‐type heterometal–oxide cage {Ln12W12O36(H2O)24}. The Nb‐W‐Ln clusters present the largest multi‐metal polyoxoniobates and a series of rare high‐nuclearity 4d‐5d‐4f multicomponent clusters. Furthermore, the giant Nb‐W‐Ln clusters may be isolated as discrete inorganic alkali salts and can be used as building blocks to form high‐dimensional inorganic–organic hybrid frameworks.  相似文献   

5.
《化学:亚洲杂志》2018,13(19):2897-2907
In the presence of the larger [H2N(CH3)2]+ and K+ counter cations as structure‐stabilizing agents, a class of unprecedented selenium and lanthanide (Ln) simultaneously bridging tetra‐vacant Dawson‐like selenotungstate aggregates [H2N(CH3)2]2Na9K2H19{[Ln4W4 Se4O22(H2O)5](Se2W14O52)2}2 ⋅ 60 H2O [Ln=TbIII ( 1 ), DyIII ( 2 ), HoIII ( 3 ), ErIII ( 4 ), TmIII ( 5 ), YbIII ( 6 )] have been obtained by the one‐pot assembly reaction of Na2WO4 ⋅ 2 H2O, Ln(NO3)3 ⋅ 6 H2O, and Na2SeO3 under moderately acidic aqueous conditions and the complexes were structurally characterized by elemental analyses, IR spectra, single‐crystal X‐ray diffraction, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. It should be noted that the appropriate molar ratio of Se/W is extremely important in the formation of 1 – 6 and can effectively ameliorate the yield of 1 – 6 . Moreover, dimethylamine hydrochloride is also indispensable and plays a considerably important role in improving the solubility of Ln ions and stabilizing the structures of 1 – 6 . The main polyoxoanion skeletons of 1 – 6 are constructed from two sandwich‐type tetra‐vacant Dawson‐like {[Ln4W4Se4O22(H2O)5](Se2W14O52)2}16− half‐units linked through two W‐O‐Ln bridges. The sandwich‐type half‐unit comprises two tetra‐vacant Dawson‐like [Se2W14O52]12− fragments encapsulating a unique dodecanuclear Se‐Ln‐W [Ln4W4Se4O22(H2O)5]8+ oxo cluster. Their solid‐state visible and NIR fluorescent properties and lifetime decay behaviors were measured and their solid‐state luminescent spectra mainly demonstrate the characteristic emission bands of Ln3+ ions. Moreover, the dominant wavelengths, the color purity, and correlated color temperatures of 1 – 5 have been also calculated. In addition, the luminous flux values of 1 – 5 are 2031, 6992, 3071, 921, and 477 lumen, respectively.  相似文献   

6.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

7.
Ligand L was synthesized and then coordinated to [Ln(hfac)3] ? 2 H2O (LnIII=Tb, Dy, Er; hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion) and [Ln(tta)3]?2 H2O (LnIII=Eu, Gd, Tb, Dy, Er, Yb; tta?=2‐thenoyltrifluoroacetonate) to give two families of dinuclear complexes [Ln2(hfac)6( L )] ? C6H14 and [Ln2(tta)6( L )] ? 2 CH2Cl2. Irradiation of the ligand at 37 040 cm?1 and 29 410 cm?1 leads to tetrathiafulvalene‐centered and 2,6‐di(pyrazol‐1‐yl)‐4‐pyridine‐centered fluorescence, respectively. The ligand acts as an organic chromophore for the sensitization of the infrared ErIII (6535 cm?1) and YbIII (10 200 cm?1) luminescence. The energies of the singlet and triplet states of L are high enough to guarantee an efficient sensitization of the visible EuIII luminescence (17 300–14 100 cm?1). The EuIII luminescence decay can be nicely fitted by a monoexponential function that allows a lifetime estimation of (0.49±0.01) ms. Finally, the magnetic and luminescence properties of [Yb2(hfac)6( L )] ? C6H14 were correlated, which allowed the determination of the crystal field splitting of the 2F7/2 multiplet state with MJ=±1/2 as ground states.  相似文献   

8.
《中国化学快报》2023,34(2):107238
A series of dl-serine covalently modified multinuclear lanthanide implanted arsenotungstates K2[{Ln(H2O)7}2{As4W44O137(OH)18(H2O)2(dl-Ser)2}{Ln2(H2O)5(dl-Ser)}2]·65H2O (dl-Ser = dl-serine, Ln = La (1), Ce (2), Pr (3)) are obtained. Crystal structure analysis shows that these compounds are isomorphic and contain the basic [{As4W44O137(OH)18(H2O)2(dl-Ser)2}{Ln2(H2O)5(dl-Ser)}2]8– polyoxoanion constituted by two {As2W19O59(OH)8(H2O)}6? subunits, a [W6O23(OH)2(dl-Ser)2]14? fragment, and two embedded [Ln2(H2O)5(dl-Ser)]5+ groups, which further build into one dimensional linear chainlike structure via two peripheral Ln3+ ions. Most remarkably, these compounds exhibit rapid photochromic behaviors, which changed color quickly from white (1), yellow (2), green (3) to blue (1), brown (2) and glaucous (3) in ten minutes under UV irradiation, and that the colors gradually recovered in the dark for approximately 22 h.  相似文献   

9.
Investigation into a hydrothermal reaction system with transition‐metal (TM) ions, 1,4‐bis(1,2,4‐triazol‐1‐lmethyl)benzene (BBTZ) and various charge‐tunable Keggin‐type polyoxometalates (POMs) led to the preparation of four new entangled coordination networks, [CoII(HBBTZ)(BBTZ)2.5][PMo12O40] ( 1 ), [CuI(BBTZ)]5[BW12O40] ? H2O ( 2 ), [CuII(BBTZ)]3[AsWV3WVI9O40] ? 10 H2O ( 3 ), and [CuII5(BBTZ)7(H2O)6][P2W22Cu2O77(OH)2] ? 6 H2O ( 4 ). All compounds were characterized by using elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The mixed valence of W centers in compound 3 was further confirmed by using XPS spectroscopy and bond‐valence sum calculations. In the structural analysis, the entangled networks of 1 – 4 demonstrate zipper‐closing packing, 3D polythreading, 3D polycatenation, and 3D self‐penetration, respectively. Moreover, with the enhancement of POM negative charges and the use of different TM types, the number of nodes in the coordination networks of 1 – 4 increased and the basic metal–organic building motifs changed from a 1D zipper‐type chain (in 1 ) to a 2D pseudorotaxane layer (in 2 ) to a 3D diamond‐like framework (in 3 ) and finally to a 3D self‐penetrating framework (in 4 ). The photocatalytic properties of compounds 1 – 4 for the degradation of methylene blue under UV light were also investigated; all compounds showed good catalytic activity and the photocatalytic activity order of Keggin‐type species was initially found to be {XMo12O40}>{XW12O40}>{XW12?nTMnO40}.  相似文献   

10.
《化学:亚洲杂志》2017,12(5):507-514
Five hexanuclear lanthanide clusters of composition [Ln64‐O)2(HCOO)2L4(HL′)2(dmf)2] [Ln=Dy ( 1 ), Er ( 2 ), Ho ( 3 ), Tb ( 4 ), Gd ( 5 ); H2L=2‐{[2‐(hydroxymethyl)phenylimino]methyl}‐6‐methoxyphenol; H3L′=3‐{[2‐(hydroxymethyl)phenylimino]methyl}benzene‐1,2‐diol; H3L′ was derived in situ from the H2L ligand] were prepared under solvothermal conditions. The [Ln6] cores of 1 – 5 possess an unprecedented motif, namely, two tetrahedron Ln4 units sharing an edge and two vertices. The six LnIII ions of 1 – 5 are connected through two μ4‐O anions. Magnetic susceptibility studies reveal that complex 1 exhibits frequency dependence of the alternating current susceptibility typical of single‐molecule magnets. Complex 1 possesses a relatively large energy barrier of 85 K among all of the reported Dy6 single‐molecule magnets.  相似文献   

11.
A giant tetrahedral heterometallic polyoxometalate (POM) [Dy30Co8Ge12W108O408(OH)42(OH2)30]56?, which shows single‐molecule magnet (SMM) behavior, is described. This hybrid contains the largest number of 4f ions of any polyoxometalate (POM) reported to date and is the first to incorporate two different 3d–4f and 4f coordination cluster assemblies within same POM framework.  相似文献   

12.
Two new isostructural 3D lanthanide–organic frameworks [H2N(Me)2] [Ln3(OH)(bpt)3(H2O)3] (DMF)2?(H2O)4 ( 1‐Ln ; Ln=Sm and Eu) with a 1D channel (25 Å) have been successfully assembled from the rare trinuclear [Ln3(OH)(COO)9] clusters and biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt) and exhibit high stability towards water in the pH range 3–10. MOF 1‐Eu is a promising luminescent probe for sensing Fe3+ in aqueous solution and is also selective towards rhodamine B (RhB) with a superior adsorption capacity of 735 mg g?1, which is the highest among the reported Ln‐MOFs for RhB removal so far. Periodic DFT calculations further confirmed the selective adsorption of rhodamine B over other dyes.  相似文献   

13.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

14.
The Schiff base ligand N1,N3‐bis(3‐methoxysalicylidene)diethylenetriamine (H2valdien) and the co‐ligand 6‐chloro‐2‐hydroxypyridine (Hchp) were used to construct two 3d–4f heterometallic single‐ion magnets [Co2Dy(valdien)2(OCH3)2(chp)2] ? ClO4 ? 5 H2O ( 1 ) and [Co2Tb(valdien)2(OCH3)2(chp)2] ? ClO4 ? 2 H2O ? CH3OH ( 2 ). The two trinuclear [CoIII2LnIII] complexes behave as a mononuclear LnIII magnetic system because of the presence of two diamagnetic cobalt(III) ions. Complex 1 has a molecular symmetry center, and it crystallizes in the C2/c space group, whereas complex 2 shows a lower molecular symmetry and crystallizes in the P21/c space group. Magnetic investigations indicated that both complexes are field‐induced single‐ion magnets, and the CoIII2–DyIII complex possesses a larger energy barrier [74.1(4.2) K] than the CoIII2–TbIII complex [32.3(2.6) K].  相似文献   

15.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

16.
Mixed 3d–4f 12‐azametallacrown‐4 complexes, [Mn2Ln2(OH)2(hppt)4(OAc)2(DMF)2] ? 2 DMF ? H2O [Ln=Dy ( 1 ), Er ( 2 ), Yb ( 3 ), Tb ( 4 ) and Y ( 5 ), H2hppt=3‐(2‐hydroxyphenyl)‐5‐(pyrazin‐2‐yl)‐1,2,4‐triazole)], were synthesized by reactions of H2hppt with Mn(OAc)2 ? 4 H2O and Ln(NO3)3 ? 6 H2O. This is the first 3d–4f azametallacrown family to incorporate Ln ions into the ring sets. These isostructural complexes exhibit alternating arrangements of two Mn and two Ln ions in the rings with each pair of metal centers bound by an N?N group and μ2‐O bridging. Magnetic measurements revealed dominant antiferromagnetic interactions between metal centers, and frequency‐dependent out‐of‐phase (${\chi {^\prime}{^\prime}_{\rm{M}} }$ ) signals below 4 K suggest slow relaxation of magnetization.  相似文献   

17.
The disassembly and reassembly of giant molecules are essential processes in controlling the structure and function of biological and artificial systems. In this work, the disassembly and reassembly of a giant ring‐shaped polyoxometalate (POM) without isomerization of the monomeric units is reported. The reaction of a hexavacant lacunary POM that is soluble in organic solvents, [P2W12O48]14?, with manganese cations gave the giant ring‐shaped POM [{γ‐P2W12O48Mn4(C5H7O2)2(CH3CO2)}6]42?. This POM is a hexamer of manganese‐substituted {P2W12O48Mn4} units, and its inner cavity was larger than any of those previously reported for ring‐shaped polyoxotungstates. It was disassembled into monomeric units in acetonitrile, and the removal of the capping organic ligands on the manganese cations led to reassembly into a tetrameric ring‐shaped POM, [{γ‐P2W12O48Mn4(H2O)6}4(H2O)4]24?.  相似文献   

18.
Lanthanide triflates have been used to incorporate NdIII and SmIII ions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3 complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8 in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdII cryptand complex, assign a 4f4 electron configuration to this ion.  相似文献   

19.
A family of solution-stable polyanions [Na⊂{LnIII(H2O)}{WVIO(H2O)}PV4WVI26O98]12− (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) represent the first examples of polyoxometalates comprising a single lanthanide(III) or yttrium(III) ion in a rare trigonal prismatic O6 environment. Their synthesis exploits the reactivity of the organophosphonate-functionalized precursor [P4W24O92(C6H5PVO)2]16− with heterometal ions and yields hydrated potassium or mixed lithium/potassium salts of composition KxLnyH12–xy[Na⊂{Ln(H2O)}{WO(H2O)}P4W26O98]⋅nH2O⋅mLiCl (x=8.5–11; y=0–2; n=24–34; m=0–1.5). The Dy, Ho, Er and Yb derivatives are characterized by slow magnetization relaxation.  相似文献   

20.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号