首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The reaction of diazo compounds with alkenes catalysed by complex [RuCl(cod)(Cp)] (cod=1,5‐cyclooctadiene, Cp=cyclopentadienyl) has been studied. The catalytic cycle involves in the first step the decomposition of the diazo derivative to afford the reactive [RuCl(Cp){?C(R1)R2}] intermediate and a mechanism is proposed for this step based on a kinetic study of the simple coupling reaction of ethyl diazoacetate. The evolution of the Ru–carbene intermediate in the presence of alkenes depends on the nature of the substituents at both the diazo N2?C(R1)R2 (R1, R2=Ph, H; Ph, CO2Me; Ph, Ph; C(R1)R2=fluorene) and the olefin substrates R3(H)C?C(H)R4 (R3, R4=CO2Et, CO2Et; Ph, Ph; Ph, Me; Ph, H; Me, Br; Me, CN; Ph, CN; H, CN; CN, CN). A remarkable reactivity of the complex was recorded, especially towards unstable aryldiazo compounds and electron‐poor olefins. The results obtained indicate that either cyclopropanation or metathesis products can be formed: the first products are favoured by the presence of a cyano substituent at the double bond and the second ones by a phenyl.  相似文献   

2.
The [(P,P)Au=C(Ph)CO2Et]+ complex 3 [where (P,P) is an o‐carboranyl diphosphine ligand] was prepared by diazo decomposition at ?40 °C. It is the first α‐oxo gold carbene complex to be characterized. Its crystallographic structure was determined and DFT calculations have been performed, unraveling the key influence of the chelating (P,P) ligand. The gold center is tricoordinate and the electrophilicity of the carbene center is decreased. Complex 3 mimics transient α‐oxo gold carbenes in a series of catalytic transformations, and provides support for the critical role of electrophilicity in the chemoselectivity of phenol functionalization (O?H vs. C?H insertion).  相似文献   

3.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

4.
Bis(NHC)ruthenium(II)–porphyrin complexes were designed, synthesized, and characterized. Owing to the strong donor strength of axial NHC ligands in stabilizing the trans M?CRR′/M?NR moiety, these complexes showed unprecedently high catalytic activity towards alkene cyclopropanation, carbene C? H, N? H, S? H, and O? H insertion, alkene aziridination, and nitrene C? H insertion with turnover frequencies up to 1950 min?1. The use of chiral [Ru(D4‐Por)(BIMe)2] ( 1 g ) as a catalyst led to highly enantioselective carbene/nitrene transfer and insertion reactions with up to 98 % ee. Carbene modification of the N terminus of peptides at 37 °C was possible. DFT calculations revealed that the trans axial NHC ligand facilitates the decomposition of diazo compounds by stabilizing the metal–carbene reaction intermediate.  相似文献   

5.
A series of pyrazole‐substituted [hydrotris(1H‐pyrazolato‐κN1)borato(1−)]iridium complexes of the general composition [Ir(Tpx)(olefin)2] (Tpx=TpPh and TpTh) and their capability to activate C−H bonds is presented. As a test reaction, the double C−H activation of cyclic‐ether substrates leading to the corresponding Fischer carbene complexes was chosen. Under the reaction conditions employed, the parent compound [Ir(TpPh)(ethene)2] was not isolable; instead, (OC‐6‐25)‐[Ir(TpPhκCPh,κ3N,N′,N″)(ethyl)(η2‐ethene)] ( 1 ) was formed diastereoselectively. Upon further heating, 1 could be converted exclusively to (OC‐6‐24)‐[Ir(TpPhκ2CPh,CPh,κ3N,N′,N″)(η2‐ethene)] ( 2 ). Complex 1 , but not 2 , reacted with THF to give (OC‐6‐35)‐[Ir(TpPhκ3N,N′,N″)H(dihydrofuran‐2(3H)‐ylidene)] ( 3 ), a cyclic Fischer carbene formed by double C−H activation of THF. Accordingly, complexes of the general formula [Ir(Tpx)(butadiene)] (see 4 – 6 ; butadiene=buta‐1,3‐diene, 2‐methylbuta‐1,3‐diene (isoprene), 2,3‐dimethylbuta‐1,3‐diene) reacted with THF to yield 3 or the related derivative 9 . The reaction rate was strongly dependent on the steric demand of the butadiene ligand and the nature of the substituent at the 3‐position of the pyrazole rings.  相似文献   

6.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

7.
The double C? H bond activation of a series of linear and cyclic ethers by the iridium complex [Tptol′Ir(C6H5)(N2)] ( 2? N2), which features a cyclometalated hydrotris(3‐p‐tolylpyrazol‐1‐yl)borate ligand (Tptol′) coordinated in a κ4N,N′,N′′,C manner, has been studied. Two methyl ethers, namely, Me2O and MeOtBu, along with diethyl ether and the cyclic ethers tetrahydrofuran, tetrahydropyran (THP), and 1,4‐dioxane have been investigated with formation in every case of the corresponding hydride carbene complexes 3 – 8 , which are stabilized by κ4‐coordination of the ancillary Tptol′ ligand. Five of the compounds have been structurally authenticated by X‐ray crystallography. A remarkable feature of these rearrangements is the reversibility of the double C? H bond activation of Me2O, MeOtBu, Et2O, and THP. This has permitted catalytic deuterium incorporation into the methyl groups of the two methyl ethers, although in a rather inefficient manner (for synthetic purposes). Although possible in all cases, C? C coupling by migratory insertion of the carbene into the Ir? C σ bond of the metalated linkage has only been observed for complex 8 that contains a cyclic carbene that results from α,α‐C? H activation of 1,4‐dioxane. Computational studies on the formation of iridium carbenes are also reported, which show a role for metalated Tp ligands in the double C? H activation and account for the reversibility of the reaction in terms of the relative stability of the reagents and the products of the reaction.  相似文献   

8.
Treatment of pyridine‐stabilized silylene complexes [(η5‐C5Me4R)(CO)2(H)W?SiH(py)(Tsi)] (R=Me, Et; py=pyridine; Tsi=C(SiMe3)3) with an N‐heterocyclic carbene MeIiPr (1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) caused deprotonation to afford anionic silylene complexes [(η5‐C5Me4R)(CO)2W?SiH(Tsi)][HMeIiPr] (R=Me ( 1‐Me ); R=Et ( 1‐Et )). Subsequent oxidation of 1‐Me and 1‐Et with pyridine‐N‐oxide (1 equiv) gave anionic η2‐silaaldehydetungsten complexes [(η5‐C5Me4R)(CO)2W{η2‐O?SiH(Tsi)}][HMeIiPr] (R=Me ( 2‐Me ); R=Et ( 2‐Et )). The formation of an unprecedented W‐Si‐O three‐membered ring was confirmed by X‐ray crystal structure analysis.  相似文献   

9.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

10.
A series of Al(III) and Sn(II) diiminophosphinate complexes have been synthesized. Reaction of Ph(ArCH2)P(?NBut)NHBut (Ar = Ph, 3 ; Ar = 8‐quinolyl, 4 ) with AlR3 (R = Me, Et) gave aluminum complexes [R2Al{(NBut)2P(Ph)(CH2Ar)}] (R = Me, Ar = Ph, 5 ; R = Me, Ar = 8‐quinolyl, 6 ; R = Et, Ar = Ph, 7 ; R = Et, Ar = quinolyl, 8 ). Lithiated 3 and 4 were treated with SnCl2 to afford tin(II) complexes [ClSn{(NBut)2P(Ph)(CH2Ar)}] (Ar = Ph, 9 ; Ar = 8‐quinolyl, 10 ). Complex 9 was converted to [(Me3Si)2NSn{(NBut)2P(Ph)(CH2Ph)}] ( 11 ) by treatment with LiN(SiMe3)2. Complex 11 was also obtained by reaction of 3 with [Sn{N(SiMe3)2}2]. Complex 9 reacted with [LiOC6H4But‐4] to yield [4‐ButC6H4OSn{(NBut)2P(Ph)(CH2Ph)}] ( 12 ). Compounds 3–12 were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 6 , 10 , and 11 were further characterized by single crystal X‐ray diffraction techniques. The catalytic activity of complexes 5–8 , 11 , and 12 toward the ring‐opening polymerization of ε‐caprolactone (CL) was studied. In the presence of BzOH, the complexes catalyzed the ring‐opening polymerization of ε‐CL in the activity order of 5 > 7 ≈ 8 > 6 ? 11 > 12 , giving polymers with narrow molecular weight distributions. The kinetic studies showed a first‐order dependency on the monomer concentration in each case. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4621–4631, 2006  相似文献   

11.
A new method for the modification of a silylamino ligand has been developed through mono and dual C(sp3)−H/Si−H cross-dehydrocoupling with silanes. The reaction of [LY{η2-(C,N)-CH2Si(Me2)NSiMe3}] (L=bis(2,6-diisopropylphenyl)-β-diketiminato, L′ ( 1L ′); L=tris(3,5-dimethylpyrazolyl)borate, TpMe2 ( 1TpMe2 )) with 2 equivalents of PhSiH3 in toluene gave the complexes [LY{η2-(C,N)-C(SiH2Ph)2Si(Me2)NSiMe3}] (L=L′ ( 2L’ ); L=TpMe2 ( 2TpMe2 )). Moreover, 1TpMe2 reacted with the secondary silanes Ph2SiH2 and Et2SiH2 to afford the corresponding mono C−H activation products [TpMe2Y{η2-(C,N)-CH(SiHR2)Si(Me2)NSiMe3}] (R=Ph ( 4 b ); R=Et ( 4 c )). The equimolar reaction of 1TpMe2 with PhSiH3 also produced the mono C−H activation product 4 a ([TpMe2Y{η2-(C,N)-CH(SiH2Ph)Si(Me2)NSiMe3}(thf)]). A study of their reactivity showed that 4 a facilely reacted with 2 equivalents of benzothiazole by an unusual 1,1-addition of the C=N bond of the benzothiazolyl unit to the Si−H bond to give the C−H/Si−H cross-dehydrocoupling product [(TpMe2)Y{η3-(N,N,N)-N(SiMe3)SiMe2CH2Si(Ph)(CSC6H4N)(CHSC6H4N)}] ( 5 ). These results indicate that this modification endows the silylamino ligand with novel reactivity.  相似文献   

12.
The synthesis and characterization of the first catalytic manganese N‐heterocyclic carbene complexes are reported: MnBr(N‐methyl‐N′‐2‐pyridylbenzimidazol‐2‐ylidine)(CO)3 and MnBr(N‐methyl‐N′‐2‐pyridylimidazol‐2‐ylidine)(CO)3. Both new species mediate the reduction of CO2 to CO following two‐electron reduction of the MnI center, as observed with preparative scale electrolysis and verified with 13CO2. The two‐electron reduction of these species occurs at a single potential, rather than in two sequential steps separated by hundreds of millivolts, as is the case for previously reported MnBr(2,2′‐bipyridine)(CO)3. Catalytic current enhancement is observed at voltages similar to MnBr(2,2′‐bipyridine)(CO)3.  相似文献   

13.
The complexes Fn‐TpAg(L) (Fn‐Tp=a perfluorinated hydrotris(indazolyl) borate ligand; L=acetone or tetrahydrofuran) efficiently catalyze the functionalization of non‐activated alkanes such as hexane, 2,3‐dimethylbutane, or 2‐methylpentane by insertion of CHCO2Et units (from N2CHCO2Et, ethyl diazoacetate, EDA) into their C? H bonds. The reactions are quantitative (EDA‐based), with no byproducts derived from diazo coupling being formed. In the case of hexane, the functionalization of the methyl C? H bonds has been achieved with the highest regioselectivity known to date with this diazo compound. This catalytic system also operates under biphasic conditions by using fluorous solvents such as Fomblin or perfluorophenanthrene. Several cycles of catalyst recovery and reuse have been performed, with identical chemo‐ and regioselectivities.  相似文献   

14.
A series of unusual chemical‐bond transformations were observed in the reactions of high active yttrium? dialkyl complexes with unsaturated small molecules. The reaction of scorpionate‐anchored yttrium? dibenzyl complex [TpMe2Y(CH2Ph)2(thf)] ( 1 , TpMe2=tri(3,5‐dimethylpyrazolyl)borate) with phenyl isothiocyanate led to C?S bond cleavage to give a cubane‐type yttrium–sulfur cluster, {TpMe2Y(μ3‐S)}4 ( 2 ), accompanied by the elimination of PhN?C(CH2Ph)2. However, compound 1 reacted with phenyl isocyanate to afford a C(sp3)? H activation product, [TpMe2Y(thf){μ‐η13‐OC(CHPh)NPh}{μ‐η32‐OC(CHPh)NPh}YTpMe2] ( 3 ). Moreover, compound 1 reacted with phenylacetonitrile at room temperature to produce γ‐deprotonation product [(TpMe2)2Y]+[TpMe2Y(N=C?CHPh)3]? ( 6 ), in which the newly formed N?C?CHPh ligands bound to the metal through the terminal nitrogen atoms. When this reaction was carried out in toluene at 120 °C, it gave a tandem γ‐deprotonation/insertion/partial‐TpMe2‐degradation product, [(TpMe2Y)2(μ‐Pz)2{μ‐η13‐NC(CH2Ph)CHPh}] ( 7 , Pz=3,5‐dimethylpyrazolyl).  相似文献   

15.
Template combination of copper acetate (Cu(AcO)2?H2O) with sodium dicyanamide (NaN(C≡N)2, 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH2, 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)–(2,4‐alkoxy‐1,3,5‐triazapentadienato) complexes [Cu{NH?C(OR)NC(OR)?NH}2] (R=Me ( 1 ), Et ( 2 ), nPr ( 3 ), iPr ( 4 ), CH2CH2OCH3 ( 5 )) or cationic copper(II)–(2‐alkoxy‐4‐amino‐1,3,5‐triazapentadiene) complexes [Cu{NH?C(OR)NHC(NH2)?NH}2](AcO)2 (R=Me ( 6 ), Et ( 7 ), nPr ( 8 ), nBu ( 9 ), CH2CH2OCH3 ( 10 )), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6 – 10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH?C(OR)NC(NH2)?NH}2] 11 – 15 . Reaction of 11 , 12 or 15 with acetyl acetone (MeC(?O)CH2C(?O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NC NHC(?NH)OR, whereas the same treatment of the cationic complexes 6 , 7 or 10 allows the corresponding metal‐free triazapentadiene salts {NH2C(OR)?NC(NH2)?NH2}(OAc) to be isolated. The alkoxy‐1,3,5‐triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical‐mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent‐free microwave‐assisted synthesis of ketones from secondary alcohols with tert‐butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h?1).  相似文献   

16.
A series of well-defined N-heterocyclic carbene palladium (II) complexes with general formula (NHC)Pd(N˄O)(OAc) were prepared through reaction of Pd (NHC)(OAc)2(H2O) with 1-methyl-1H-pyrazole-3-carboxylic acid or 1-methyl-1H-indazole-3-carboxylic acid in the presence of K2CO3. These complexes were then used for desulfinative Sonogashira coupling of arylsulfonyl hydrazides with terminal alkynes. With low catalyst loading, all synthesized palladium compounds exhibited moderate to high catalytic activities for the reactions.  相似文献   

17.
Coinage metal complexes of the N‐heterocyclic carbene–phosphinidene adduct IPr ? PPh (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) were prepared by its reaction with CuCl, AgCl, and [(Me2S)AuCl], which afforded the monometallic complexes [(IPr ? PPh)MCl] (M=Cu, Ag, Au). The reaction with two equivalents of the metal halides gave bimetallic [(IPr ? PPh)(MCl)2] (M=Cu, Au); the corresponding disilver complex could not be isolated. [(IPr ? PPh)(CuOTf)2] was prepared by reaction with copper(I) trifluoromethanesulfonate. Treatment of [(IPr ? PPh)(MCl)2] (M=Cu, Au) with Na(BArF) or AgSbF6 afforded the tetranuclear complexes [(IPr ? PPh)2M4Cl2]X2 (X=BArF or SbF6), which contain unusual eight‐membered M4Cl2P2 rings with short cuprophilic or aurophilic contacts along the chlorine‐bridged M???M axes. Complete chloride abstraction from [(IPr ? PPh)(AuCl)2] was achieved with two equivalents of AgSbF6 in the presence of tetrahydrothiophene (THT) to form [(IPr ? PPh){Au(THT)}2][SbF6]2. The cationic tetra‐ and dinuclear complexes were used as catalysts for enyne cyclization and carbene transfer reactions.  相似文献   

18.
In the two ruthenium(II)–porphyrin–carbene complexes ­(di­benzoyl­carbenyl‐κC)(pyridine‐κN)(5,10,15,20‐tetra‐p‐tolyl­porphyrinato‐κ4N)­ruthenium(II), [Ru(C15H10O2)(C5H5N)(C48H36N4)], (I), and (pyridine‐κN)(5,10,15,20‐tetra‐p‐tolyl­porphyrinato‐κ4N)[bis(3‐tri­fluoro­methyl­phenyl)­carbenyl‐κC]­ruthenium(II), [Ru(C15H8F6)(C5H5N)(C48H36N4)], (II), the pyridine ligand coordinates to the octahedral Ru atom trans with respect to the carbene ligand. The C(carbene)—Ru—N(pyridine) bonds in (I) coincide with a crystallographic twofold axis. The Ru—C bond lengths of 1.877 (8) and 1.868 (3) Å in (I) and (II), respectively, are slightly longer than those of other ruthenium(II)–porphyrin–carbene complexes, owing to the trans influence of the pyridine ligands.  相似文献   

19.
Monomeric Tripod–Zinc Thiolate Complexes Reaction of the pyrazolylborate-zinc complex TpCum,MeZn–OH with the corresponding thiols yielded the stable complexes TpCum,MeZn–SR ( 1 : R = Ph, 2 : R = CH2–Ph, 3 : R = CH2–CH2–Ph) which are further representatives of this class of compounds. Using the ligand tris(benzimidazolylmethyl)amine (BIMA), zinc perchlorate, and the corresponding sodium thiolates, the cationic complexes (BIMA)Zn–SR (R = Ph, CH2Ph) were obtained, which were isolated as [(BIMA)Zn–S–Ph] BPh4 ( 4 ) and [(BIMA)Zn–S–CH2Ph] ClO4 ( 5 ). A structure determination of 4 confirmed the pseudotetrahedral coordination geometry for this new type of compounds.  相似文献   

20.
The reaction of monomeric [(TptBu,Me)LuMe2] (TptBu,Me=tris(3‐Me‐5‐tBu‐pyrazolyl)borate) with primary aliphatic amines H2NR (R=tBu, Ad=adamantyl) led to lutetium methyl primary amide complexes [(TptBu,Me)LuMe(NHR)], the solid‐state structures of which were determined by XRD analyses. The mixed methyl/tetramethylaluminate compounds [(TptBu,Me)LnMe({μ2‐Me}AlMe3)] (Ln=Y, Ho) reacted selectively and in high yield with H2NR, according to methane elimination, to afford heterobimetallic complexes: [(TptBu,Me)Ln({μ2‐Me}AlMe2)(μ2‐NR)] (Ln=Y, Ho). X‐ray structure analyses revealed that the monomeric alkylaluminum‐supported imide complexes were isostructural, featuring bridging methyl and imido ligands. Deeper insight into the fluxional behavior in solution was gained by 1H and 13C NMR spectroscopic studies at variable temperatures and 1H–89Y HSQC NMR spectroscopy. Treatment of [(TptBu,Me)LnMe(AlMe4)] with H2NtBu gave dimethyl compounds [(TptBu,Me)LnMe2] as minor side products for the mid‐sized metals yttrium and holmium and in high yield for the smaller lutetium. Preparative‐scale amounts of complexes [(TptBu,Me)LnMe2] (Ln=Y, Ho, Lu) were made accessible through aluminate cleavage of [(TptBu,Me)LnMe(AlMe4)] with N,N,N′,N′‐tetramethylethylenediamine (tmeda). The solid‐state structures of [(TptBu,Me)HoMe(AlMe4)] and [(TptBu,Me)HoMe2] were analyzed by XRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号