首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The end‐to‐end cyclization of telechelic polyisobutylenes (PIB's) toward cyclic polyisobutylenes is reported, using either ring‐closing metathesis (RCM) or the azide/alkyne‐“click”‐reaction. The first approach uses bisallyl‐telchelic PIB's (Mn = 1650, 3680, 9770 g mol?1) and Grubbs 1st‐, 2nd‐, and 3rd‐generation catalyst leading to cyclic PIB's in 60–80% yield, with narrow polydispersities (Mw/Mn = 1.25). Azide/alkyne‐“click”‐reactions of bisalkyne‐telechelic PIB's (Mn = 3840 and 9820 g mol?1) with excess of 1,11‐diazido‐undecane leads to the formation of mixtures of linear/cyclic PIB's under formation of oligomeric cycles. Subsequent reaction of the residual azide‐moieties in the linear PIB's with excess of alkyne‐telechelic PEO enables the chromatographic removal of the resulting linear PEO‐PIB‐block copolymers by column chromatography. Thus pure cyclic PIB's can be obtained using this double‐“click”‐method, devoid of linear contaminants. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 671–680, 2010  相似文献   

2.
The mechanisms of regiodivergent cyclizations of o‐alkynylbenzaldehyde acetals and thioacetals catalyzed by Pd and Pt halides are studied. DFT calculations found that both reactions are initiated by electrophilic activation of the acetylenic moiety instead of the previously proposed metal‐triggered C?X (X=O, S) cleavage. Both the regioselective cyclization of the π‐alkyne complex and the chemoselective [1,2]‐migration in the carbenoid intermediate were determined as key steps to achieving the observed divergence. For acetal derivatives containing an internal alkyne, the 6‐endo‐dig cyclization is more favorable and leads to the carbenoid intermediate easily through further steps of C?X fragmentation and carbocation cyclization. Then, from the carbenoid intermediate, the [1,2]‐migration of sulfur is easier than that of H, Me, and Ph; whereas, a reversed aptitude was predicted for the oxygen analogue, which is consistent with the greater ability of sulfur atoms to stabilize β‐carbocations. However, for precursors containing a terminal alkyne, the 5‐exo‐dig pathway is preferred and only the 1,2‐disubstituted indene product is seen, irrespective of the nature of the acetal; thus, a different product from that reported in the literature is predicted for benzaldehyde acetal with a terminal alkyne at the ortho position. This prediction led us to reconsider some of the reported results and hidden realities were uncovered with solid new experimental evidence.  相似文献   

3.
An effective route to novel 4‐(alkylamino)‐1‐(arylsulfonyl)‐3‐benzoyl‐1,5‐dihydro‐5‐hydroxy‐5‐phenyl‐2H‐pyrrol‐2‐ones 10 is described (Scheme 2). This involves the reaction of an enamine, derived from the addition of a primary amine 5 to 1,4‐diphenylbut‐2‐yne‐1,4‐dione, with an arenesulfonyl isocyanate 7 . Some of these pyrrolones 10 exhibit a dynamic NMR behavior in solution because of restricted rotation around the C? N bond resulting from conjugation of the side‐chain N‐atom with the adjacent α,β‐unsaturated ketone group, and two rotamers are in equilibrium with each other in solution ( 10 ? 11 ; Scheme 3). The structures of the highly functionalized compounds 10 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS), by elemental analyses, and, in the case of 10a , by X‐ray crystallography. A plausible mechanism for the reaction is proposed (Scheme 4).  相似文献   

4.
Copper‐catalyzed azide‐alkyne cycloaddition (CuAAC) was used to prepare glycosylated polyethylene (PE)–poly(ethylene glycol) (PEG) amphiphilic block copolymers. The synthetic approach involves preparation of alkyne‐terminated PE‐b‐PEG followed by CuAAC reaction with different azide functionalized sugars. The alkyne‐terminated PE‐b‐PEG was prepared by etherification reaction between hydroxyl‐terminated PE‐b‐PEG (Mn ~ 875 g mol?1) and propargyl bromide and azidoethyl glycosides were prepared by glycosylation of 2‐azidoethanol. Atmospheric pressure solids analysis probe‐mass spectrometry was used as a novel solid state characterization tool to determine the outcome of the CuAAC click reaction and end‐capping of PE‐b‐PEG by the azidoethyl glycoside group. The aqueous solution self‐assembly behavior of these amphiphilic glycosylated polymers was explored by TEM and dye solubilization studies. Carbohydrate‐bearing spherical aggregates with the ability to solubilize a hydrophobic dye were observed. The potential of these amphiphilic glycosylated polymers to self‐assemble via electro‐formation into giant carbohydrate‐bearing polymersomes was also investigated using confocal fluorescence microscopy. An initial bioactivity study of the carbohydrate‐bearing aggregates is furthermore presented. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5184–5193  相似文献   

5.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(CC) interactions, Pt Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

6.
A comprehensive mechanistic study of the InCl3‐, AuCl‐, and PtCl2‐catalyzed cycloisomerization of the 2‐(haloethynyl)biphenyl derivatives of Fürstner et al. was carried out by DFT/M06 calculations to uncover the catalyst‐dependent selectivity of the reactions. The results revealed that the 6‐endo‐dig cyclization is the most favorable pathway in both InCl3‐ and AuCl‐catalyzed reactions. When AuCl is used, the 9‐bromophenanthrene product could be formed by consecutive 1,2‐H/1,2‐Br migrations from the Wheland‐type intermediate of the 6‐endo‐dig cyclization. However, in the InCl3‐catalyzed reactions, the chloride‐assisted intermolecular H‐migrations between two Wheland‐type intermediates are more favorable. These Cl‐assisted H‐migrations would eventually lead to 10‐bromophenanthrene through proto‐demetalation of the aryl indium intermediate with HCl. The cause of the poor selectivity of the PtCl2 catalyst in the experiments by the Fürstner group was predicted. It was found that both the PtCl2‐catalyzed alkyne–vinylidene rearrangement and the 5‐exo‐dig cyclization pathways have very close activation energies. Further calculations found the former pathway would lead eventually to both 9‐ and 10‐bromophenanthrene products, as a result of the Cl‐assisted H‐migrations after the cyclization of the Pt–vinylidene intermediate. Alternatively, the intermediate from the 5‐exo‐dig cyclization would be transformed into a relatively stable Pt–carbene intermediate irreversibly, which could give rise to the 9‐alkylidene fluorene product through a 1,2‐H shift with a 28.1 kcal mol?1 activation barrier. These findings shed new light on the complex product mixtures of the PtCl2‐catalyzed reaction.  相似文献   

7.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

8.
Explorations into a series of different approaches for 9‐membered carbocycle formation have afforded the first reported example of a 9‐exo‐dig ring closure via a AuIII‐promoted reaction between an alkyne and an aryl ring as well as several additional, unique Friedel–Crafts‐type cyclizations. Analyses of the factors leading to the success of these transformations are provided, with the application of one of the developed 9‐membered ring closures affording an efficient and scalable synthesis of the bioactive resveratrol trimer caraphenol A. That synthesis proceeded with an average yield of 89 % per step (7.8 % overall yield) and has provided access to more than 600 mg of the target molecule.  相似文献   

9.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

10.
A one‐pot protocol for the diversity oriented synthesis of two N‐polyheterocycles indoloazepinobenzimidazole and benzimidazotriazolobenzodiazepine from a common N1‐alkyne‐1,2‐diamine building block is described. The approach involves sequential formation of benzimidazole through cyclocondensation and oxidation, which is followed by the formation of either an azepine ring (through alkyne activation and 6‐endo‐dig cyclization, 1,2‐migration with ring expansion, and re‐aromatization), or diazepine and triazole rings through 1,3‐dipolar cycloaddition.  相似文献   

11.
A method for the region‐selective deposition of nanoparticles (NPs) by the Huisgen 1,3‐dipolar cycloaddition is presented. The approach enables defined stacking of various oxide NPs in any order with control over layer thickness. Thereby the reaction is performed between a substrate, functionalized with a self‐assembled monolayer of an azide‐bearing phosphonic acid (PA) and aluminum oxide (AlOx) NPs functionalized with an alkyne bearing PA. The layer of alkyne functionalized AlOx NPs is then used as substrate for the deposition of azide‐functionalized indium tin oxide (ITO) NPs to provide a binary stack. This progression is then conducted with alkyne‐functionalized CeO2 NPs, yielding a ternary stack of NPs with three different NP cores. The stacks are characterized by AFM and SEM, defining the region‐selectivity of the deposition technique. Finally, these assemblies have been tested in devices as a dielectric to form a capacitor resulting in a dramatic increase in the measured capacitance.  相似文献   

12.
Catalytic 1,4‐dioxo functionalizations of 3‐en‐1‐ynes to (Z)‐ and (E)‐2‐en‐1,4‐dicarbonyl compounds are described. This regioselective difunctionalization was achieved in one‐pot operation through initial alkyne hydration followed by in situ Selectfluor oxidation. The presence of pyridine alters the reaction chemoselectivity to give 4‐hydroxy‐2‐en‐1‐carbonyl products instead. A cooperative action of pyridine and ZnII assists the hydrolysis of key oxonium intermediate.  相似文献   

13.
Five new tetradentate ligands [NNNN] with benzimidazolyl‐imine or amine nitrogen donors have been synthesized in good yields under mild conditions from easily available substrates. transN,N′‐bis(1‐Ethyl‐2‐benzimidazolylmethylene)cyclohexane‐1,2‐diimine is the best accelerating ligand in this series that supports the CuI‐catalyzed Ullmann N‐arylation and the direct three‐component azide–alkyne cycloaddition reaction to give the corresponding substituted imidazole, pyrazole, and triazole in high yields. Single‐crystal X‐ray diffraction analysis of its complex with CuI reveals a novel one‐dimensional coordination polymer of the metal chain bridged alternately by the [NNNN] ligand and diiodides.  相似文献   

14.
A novel and highly efficient method for the synthesis of 1,4‐disubstituted‐1H‐1,2,3‐triazoles by copper‐catalyzed azide‐alkyne cycloaddition has been developed. This economic and sustainable protocol uses a readily available Benedict's solution/Vitamin C catalyst system affording a wide range of 1,4‐disubstituted‐1H‐1,2,3‐triazoles under mild conditions.  相似文献   

15.
Upon exposure to a catalytic amount of [RhCl(CO)2]2 in 1,4‐dioxane, homopropargylallene‐alkynes underwent a novel cycloisomerization accompanied by the migration of the alkyne moiety of the homopropargyl functional group to produce six/five/five tricyclic compounds in good yields. A plausible mechanism was proposed on the basis of an experiment with 13C‐labeled substrate. The resulting tricyclic derivatives were further converted into the corresponding bicyclo[3.3.0] skeletons with vicinal cis dihydroxy groups.  相似文献   

16.
The precise synthesis and variation in the thermoresponsive property based on the supramolecular assembly of a novel urea end‐functionalized poly(N‐isopropylacrylamide) (PNIPAM) were studied. A series of PNIPAMs with different diphenylurea groups at the chain end (X? Ph? NH? CO? NH? Ph? trz? PNIPAM: X = H, OCH3, CH3, NO2, Cl, and CF3) were synthesized by using a combination of the atom transfer radical polymerization and the copper(I)‐catalyzed azide‐alkyne cycloaddition. The cloud point of the obtained polymers depended on the hydrogen‐bonding ability of the introduced urea group. The 1H NMR measurement suggested that the obtained PNIPAM assembled in water via the intermolecular hydrogen bonding by the terminal urea group. From the dynamic light scattering and transmission electron microscopy measurements, the aggregated nanoparticles of the resulting polymer were directly observed in water at a temperature below its cloud point. The hydrogen‐bonding property of the chain end urea group was concluded to be involved in the aggregation of the PNIPAM in water, leading to the variation in its cloud point. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6259–6268, 2009  相似文献   

17.
The first frustrated Lewis pair‐catalyzed cycloisomerization of a series of 1,5‐enynes was developed. The reaction proceeds via the π‐activation of the alkyne and subsequent 5‐endo‐dig cyclization with the adjacent alkene. The presence of PPh3 was of utmost importance on the one hand to prevent side reactions (for example, 1,1‐carboboration) and on the other hand for the efficient protodeborylation to achieve the catalytic turnover. The mechanism is explained on the basis of quantum‐chemical calculations, which are in full agreement with the experimental observations.  相似文献   

18.
Facile prepolymerization and postpolymerization functionalization approaches to prepare well‐defined fluorescent conjugated glycopolymers through Cu(I)‐catalyzed azide/alkyne “Click” ligation were explored. Two well‐defined carbazole‐based fluorescent conjugated glycopolymers were readily synthesized based on these strategies and characterized by 1H NMR, 13C NMR, IR spectra, and UV‐vis spectra. The “Click” ligation offers a very effective conjugation method to covalently attach carbohydrate residues to fluorescent conjugated polymers. In addition, the studies of carbohydrate–lectin interactions were performed by titration of concanavalin A (Con A) to D ‐glucose‐bearing poly(anthracene‐alt‐carbazole) copolymer P‐2 resulting in significant fluorescence quenching of the polymer due to carbohydrate–lectin interactions. When peanut agglutinin (PNA) was added, no distinct change in the fluorescent properties of P‐2 was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2948–2957, 2009  相似文献   

19.
We employed for the first time double click reactions: Cu(I) catalyzed azide‐alkyne 1,3‐dipolar cycloaddition and Diels–Alder (4 + 2) reactions for the preparation of H‐shaped polymer possessing pentablocks with different chemical nature (H‐shaped quintopolymer) using one‐pot technique. H‐shaped quintopolymer consists of poly(ethylene glycol) (PEG)‐poly(methylmethacrylate) (PMMA) and poly(ε‐caprolactone) (PCL)‐polystyrene (PS) blocks as side chains and poly (tert‐butylacrylate) (PtBA) as a main chain. For the preparation of H‐shaped quintopolymer, PEG‐b‐PMMA and PCL‐b‐PS copolymers with maleimide and alkyne functional groups at their centers, respectively, were synthesized and simply reacted in one‐pot with PtBA with α‐anthracene‐ω‐azide end functionalities in N,N‐dimethylformamide (DMF) using CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst at 120 °C for 48 h. The precursors and the target H‐shaped quintopolymer were characterized comprehensively by 1H NMR, UV, FTIR, GPC, and triple detection GPC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3409–3418, 2009  相似文献   

20.
The stereoselective synthesis of 1,2,3‐triazolooxazine and fused 1,2,3‐triazolo‐δ‐lactone by applying chemoenzymatic methods is described. trans‐2‐Azidocyclohexanol was successfully resolved by Novozyme 435 with an ee value of 99%. Installation of the alkyne moiety on the enantiomerically enriched azidoalcohol by O‐alkylation, followed by intramolecular azide? alkyne [3+2] cycloaddition resulted in the desired 1,2,3‐triazolooxazine derivative. Enantiomerically pure azidocyclohexanol was also subjected to the Huisgen 1,3‐dipolar cycloaddition reaction with dimethylacetylene dicarboxylate, followed by intramolecular cyclization of the corresponding cycloadduct, to furnish a fused 1,2,3‐triazolo‐δ‐lactone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号