首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kalaycı S  Somer G  Ekmekci G 《Talanta》2005,65(1):87-91
An electrode for glucose has been prepared by using an iodide selective electrode with the glucose oxidase enzyme. The iodide selective electrode used was prepared from 10% TDMAI and PVC according our previous study. The enzyme was immobilized on the iodide electrode by holding it at pH 7 phosphate buffer for 10 min at room temperature. The H2O2 formed from the reaction of glucose was determined from the decrease of iodide concentration that was present in the reaction cell. The iodide concentration was followed from the change of potential of iodide selective electrode. The potential change was linear in the 4×10−4 to 4×10−3 M glucose concentration (75-650 mg glucose/100ml blood) range. The slope of the linear portion was about 79 mV per decade change in glucose concentration. Glucose contents of some blood samples were determined with the new electrode and consistency was obtained with a colorimetric method. The effects of pH, iodide concentration, the amount of enzyme immobilized and the operating temperature were studied. No interference of ascorbic acid, uric acid, iron(III) and Cu(II) was observed. Since the iodide electrode used was not an AgI-Ag2S electrode, there was no interference of common ions such as chloride present in biological fluids. The slope of the electrode did not change for about 65 days when used 3 times a day.  相似文献   

2.
A new potentiometric sensor for the determination of iodide based on poly(3-aminophenylboronic acid) (PAPBA) film electrode was constructed. Poly(3-Aminophenylboronic acid) films were synthesized electrochemically on platinum electrode by cyclic voltammetry. The effect of film thickness, pH, and preconditioning parameters on the electrode performance were examined. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 10−6 to 10−1 M iodide ion. The limit of detection was found to be 8 × 10−7 M. The response time of the sensor was 5 s and its lifetime is about one week. To check the selectivity of the PAPBA film for iodide ion, potential interferences such as Cl, Br, F, CN, IO3, Ca2+, and Mg2+ were tested. The PAPBA electrode was also employed as a sensing platform for the determination of iodide ions in commercial table salt.  相似文献   

3.
Construction of a highly stable covalently attached multilayer film electrode containing cobalt phthalocyanine was achieved by UV irradiation of ionic self-assembled multilayer films of diazo-resins (DAR) and cobalt phthalocyanine tetrasulfonic acid (CoTsPc) tetrasodium salt. The modified electrode had good potentiometric response to iodide ion. The potentiometric response was independent of the pH of the solution between pH 2.5 and 6.0, while it was dependent on the nature of the buffer media. The modified electrode had a linear dynamic range between 4.7×10−6 M and 0.1 M with a Nernstian slope of 58.8 mV per decade and a detection limit of 3.5×10−6 M in acetate buffer (0.1 M, pH 4.6). The modified electrode also exhibited a fast response, good stability and repeatability.  相似文献   

4.
A PVC membrane electrode for iodide ions based on Cu(I)-bathocuproine as ionophore in membrane composition is prepared. The electrode exhibits a linear response over a wide concentration range 5.0×10−6 to 2.0×10−1 mol l−1 with a detection limit 1.0×10−6 mol l−1. The proposed membrane electrode shows Nernstian behavior with a slope of −56.8 mV/decade, a fast response time 10 s and a lifetime at least 3 months. Iodide-selective electrode reveals good selectivities for iodide ion over a wide variety of the other anions and can be used in pH range of 3-9. It can also be used as an indicator electrode in potentiometric titration of iodide ion.  相似文献   

5.
A new solid state fluoride ion selective electrode composed of 70% Ag2S, 10% Cu2S and 20% CaF2 has been developed. An analytically useful potential change occurred, from 1 × 10−6 to 1 × 10−1 M fluoride ion. The slope of the linear portion (1 × 10−1-1 × 10−5 M) was about 26 ± 2 mV/10-fold concentration changes in fluoride. It was found that pH change between 1 and 8 had no effect on the potential of the electrode. There was no interference of most common cations such as K+, Na+, Ca2+ and Mg2+ and anions such as Cl, NO3, SO42− and PO43−. The lifetime of the electrode was more than 2 years, when used at least 4-5 times a day, and the response time was about 60 s.The measurements were made at constant ionic strength (0.1 M NaNO3) and at room temperature. This electrode has been used for the determination of fluoride ion in Ankara city tap water and in bottled spring water using standard addition method. The validation of the electrode has been made with a commercial fluoride ion selective electrode (Orion) and high consistency was obtained.  相似文献   

6.
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg2(PABzt)2| graphite, where PABzt stands for p-aminobenzoate ion, are described. This electrode responds to PABzt with sensivity of (58.1±1.0) mV per decade over the range 1.0×10−4 to 1.0×10−1 mol l−1 at pH 6.5-8.0 and a detection limit of 3.2×10−5 mol l−1. The electrode shows easy construction, fast response time (within 10-30 s), low-cost, and excellent response stability (lifetime greater than 6 months, in continuous use). The proposed sensor displayed good selectivity for p-aminobenzoate in the presence of several substances, especially, concerning carboxylate and inorganic anions. It was used to determine p-aminobenzoate in pharmaceutical formulations by means of the standard additions method. The results obtained by using this electrode compared very favorably with those given by an HPLC procedure.  相似文献   

7.
采用离子注入技术将羧基离子注入到氧化铟锡(ITO)表面,制备了羧基离子注入氧化铟锡电极(COOH/ITO).电极表面羧基的引入用X射线光电子能谱(XPS)进行表征.此电极被应用到了吡柔比星的电化学行为的研究及其测定当中.在COOH/ITO电极上,吡柔比星在5 nmmol/L磷酸盐缓冲溶液(pH 7.2)中,出现还原峰,...  相似文献   

8.
An indirect voltammetric method is described for determination of cyanide ions and hydrogen cyanide, using the effect of cyanide on cathodic adsorptive stripping peak height of Cu-adenine. The method is based on competitive Cu complex formation reaction between adenine at the electrode surface and CN ions in solution. Under the optimum experimental conditions (pH=6.42 Britton-Robinson buffer, 1×10−4 M copper and 8×10−7 M adenine), the linear decrease of the peak current of Cu-adenine was observed, when the cyanide concentration was increased from 5×10−8 to 8×10−7 M. The detection limit was obtained as 1×10−8 M for 60 s accumulation time. The relative standard deviations for six measurements were 4 and 2% for the cyanide concentrations of 5×10−8 and 2×10−7 M, respectively. The method was applied to the determination of cyanide in various industrial waste waters such as electroplating waste water and also for determination of hydrogen cyanide in air samples.  相似文献   

9.
The feasibility of a newly synthesized Rh(III) complex, Rh[(trpy)(bpy)Cl](PF6)2, as a novel ionophore for the preparation of anion-selective polymeric membrane electrodes was tested. The ionophore exhibited anti-Hofmeister behavior with enhanced potentiometric selectivity toward thiocyanate ion compared to other anions. The influence of some experimental parameters such as membrane composition, nature and amount of plasticizer and additive and concentration of internal solution on the potential response of the SCN sensor were investigated. The electrode exhibits a Nernstian response for SCN over a wide concentration range (1.0 × 10−5 to 1.0 × 10−1 M) with a slope −58.7 ± 0.5 mV per decade and a detection limit of 4.0 × 10−6 M (0.23 ppm). It could be used in a pH range of 3.0-8.0 and has a fast response time of about 15 s. The proposed sensor was used for the determination of thiocyanate ions in real samples such as urine and saliva of smokers and nonsmokers and, as an indicator electrode, in potentiometric titrations of SCN ion.  相似文献   

10.
In this study, a new poly(vinyl chloride) (PVC) membrane sensor for La3+ ion based on 2,2′-dithiodipyridine as an ion carrier was prepared. This electrode revealed good selectivity for La3+ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, the amount of additive and concentration of internal solution on the potential response of La3+ sensor were investigated. The electrode exhibited a Nernstian slope of 20.0 ± 1.0 mV per decade of La3+ over a concentration range of 7.1 × 10−6 to 2.2 × 10−2 M of La3+ in the pH range 3.3-8.0. The response time was about 7 s and the detection limit was 3.1 × 10−6 M. The electrode can be used for at least 2 months without a considerable divergence in potential. The proposed electrode was used as an indicator electrode in potentiometric titration of oxalate and fluoride ions and was applied for determination of F ion in mouthwash solution.  相似文献   

11.
Tian L  Liu L  Chen L  Lu N  Xu H 《Talanta》2005,66(1):130-135
A vanadium oxide-modified glassy carbon electrode was simply and conveniently fabricated by casting vanadium tri(isoproxide) oxide (VO(OC3H7)3) and poly(propylene carbonate) (PPC) onto the glassy carbon electrode surface. The electrochemical properties of iodide at the VO(OC3H7)3-PPC film-modified glassy carbon electrode were investigated by cyclic voltammetry, and an anodic peak was observed at approximately +0.71 V (vs. SCE). Based on this, a sensitive and convenient electrochemical method was proposed for the determination of iodide. Flow injection amperometry (FIA) exhibited a good linear relationship with the concentration of iodide in the range of 5 × 10−7 mol L−1 and 1 × 10−3 mol L−1, and the detection limit was 1 × 10−7 mol L−1. Quantitative recovery of iodide in synthetic samples has been obtained and the interferences from different cations and anions have been studied. The method has been successfully applied to the determination of iodide in dry edible seaweed. The concentrations of iodide measured by this method are in good agreement with those obtained by spectrophotometric method.  相似文献   

12.
Zhang L  Li W  Shi M  Kong J 《Talanta》2006,70(2):432-436
A novel film modified electrode for the determination of trace lead was developed in this work. The modified electrode was prepared by the electropolymerization of N,N′-(o-phenylene)-bis-benzenesulfonamide (PBSA) as the ion capturing reagent to create the functional film. The modified electrode shows a high selectivity towards Pb2+ over interfering cations, e.g. Cu2+, Cd2+, Co2+, Ni2+, Zn2+, Cr2+, and the calibration curve was linear in the concentration range of 2.0 × 10−9 to 1.0 × 10−7 M with correlation coefficient of 0.999. For 20 min accumulation, detection limit of 1.0 × 10−9 M was obtained at the signal to noise ratio of 3. Analytical availability of the modified electrode was demonstrated by the application for samples from pond water.  相似文献   

13.
A novel potentiometric zirconium - PVC matrix membrane sensor incorporating bis(diphenylphosphino) ferrocene as an electroactive material and tris(2-ethylhexyl)phosphate as solvent mediator is described. In mixed acetate buffer solution of pH 4.8, the sensor displays a rapid and linear response for zirconium ion over the concentration range 1.0 × 10−1 to 1.0 × 10−7 mol L−1 with a good slope of 59.7 ± 0.3 mV per decade and detection limit 1.8 × 10−8 mol L−1. The best performance was obtained with membrane composition 33% PVC, 65% TEHP, 1% NaTPB and 1% ionophore. The proposed electrode revealed excellent selectivity for zirconium ion over a wide variety of alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.15-7.8. The electrode was applied for at least 1 month without any considerable divergence in the potential responses. The practical utility of the electrode has been demonstrated by its use as an indicator electrode in the potentiometric titration of zirconium ions with sodium fluoride and in determination of zirconium ion in some alloy, tape and waste water samples.  相似文献   

14.
A novel tetrachlorothallate (III) (TCT)-selective membrane sensor consisting of tetrachlorothallate (III)-2,3,5-triphenyl-2-H-tetrazolium ion pair dispersed in a PVC matrix plasticized with dioctylphthalate is described. The electrode shows a stable, near-Nernstian response for 1×10−3-4×10−6 M thallium (III) at 25 °C with an anionic slope of 56.5±0.5 over the pH range 3-6. The lower detection limit and the response time are 2×10−6 M and 30-60 s, respectively. Selectivity coefficients for Tl(III) relative to a number of interfering substances were investigated. There is negligible interference from many cations and anions; however, iodide and bromide are significantly interfere. The determination of 0.5-200 μg ml−1 of Tl(III) in aqueous solutions shows an average recovery of 99.0% and a mean relative standard deviation of 1.4% at 50.0 μg ml−1. The direct determination of Tl(III) in spiked wastewater gave results that compare favorably with those obtained by the atomic absorption spectrometric method. The electrode was successfully applied for the determination of thallium in zinc concentrate. Also the tetrachlorothallate electrode has been utilized as an end point indicator electrode for the determination of thallium using potentiometric titration.  相似文献   

15.
The spectrophotometric method for the determination of trace surfactants with Erythrosine B (EB) based on the aqueous reaction and the collection on a membrane filter by filtration was studied. Cationic surfactants (CS+), such as a quaternary ammonium ion, and polyoxyethylene non-ionic surfactants (NS) in the presence of potassium ion, containing a long-chain alkyl group associate with EB buffered at pH 5.5. CS+ associates with anionic surfactants (AS). For the determination of CS+, four methods were employed: the collection of the ion associate of CS+ with EB on a mixed cellulose ester (MCE) or PTFE membrane filter, the collection of the ion associate of CS+ with AS on a PTFE membrane filter followed by the ion exchange of AS with EB, and the first collection of CS+ followed by the second collection of EB on a PTFE membrane filter. For the determination of AS, the collection of the ion associate of AS with CS+ on a PTFE membrane filter followed by the ion exchange of AS with EB was done. For the determination of NS, the ion associate of NS with EB was collected on a MCE membrane filter. The MCE membrane filter with the analyte was dissolved in methyl cellosolve. The analyte on the PTFE membrane filter was eluted with ethanol. The CS+ up to 5×10−7 M can be determined by the absorbance at 542 nm of the methyl cellosolve solution or the absorbance at 535 nm of the ethanol solution. The AS up to 5×10−7 M can be determined by the absorbance at 536 nm of the ethanol solution. The NS up to 2.53×10−6 M can be determined by the absorbance at 537 nm of the methyl cellosolve solution. This is the sensitive method for the determination of 10−8 to 10−7 M order of ionic surfactants and 10−7 to 10−6 M order of NS without toxic organic solvents.  相似文献   

16.
A PVC-based sensor for La3+ ions based on N-[hexahydrocyclopentapyrol-2((1H)yl)amino]carbonyl]-4-methyl benzene sulfonamide (gliclazide) as a novel carrier was prepared. The electrode exhibits a Nernstian response for La3+ over a wide concentration range (1.0×10−1-1.0×10−6 M) with a slope of 20.1 mV per decade. The limit of detection is 8.0×10−7 M. The sensor has a very short response time (<15 s) and a useful working pH range of 4.0-8.0. The proposed membrane sensor shows excellent discriminating ability towards La3+ ions with regard to several alkali, alkaline earth, transition and heavy metal ions. The electrode was successfully applied for determination of La3+ in binary mixtures.  相似文献   

17.
The Sonogel-Carbon electrode is a special class of sol-gel electrode that exhibits favourable mechanic and electric properties to be used as electrochemical sensor. In this study, Sonogel-Carbon modified with l-Cysteine was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for detection of epinephrine in the presence of uric acid. The response of catalytic current with epinephrine concentration shows a linear relation in the range from 1 × 10−7 to 5 × 10−4 M with a correlation coefficient of 0.998, and a detection limit of 8.7 × 10−8 M. The modified electrode had also been applied to the determination of epinephrine and uric acid in biological samples with satisfactory results. A surface characterisation of this modified electrode was carried out helped by scanning electron microscopy (SEM) and X-Ray energy dispersive spectroscopy (EDS).  相似文献   

18.
Wang J  Wang L  Han Y  Jia J  Jiang L  Yang W  Sun Q  Lv H 《Analytica chimica acta》2007,589(1):33-38
Novel polyvinyl chloride (PVC) membrane electrodes based on triheptyl dodecyl ammonium iodide have been developed. In the presence of 12.5 mM H2O2, these electrodes are capable of determining molybdate(VI) ion. The electrodes exhibit near-Nernstian responses over a wide concentration range (2.0 × 10−6 to 5.0 × 10−3 M). The proposed electrodes demonstrate satisfying selectivity for molybdate(VI) ion in the presence of a wide variety of anions other than iodide, and can be used in the pH range 5.0-7.0. Moreover, the electrodes show an average response time of 2-3 min and can be used over a period of 2 months without any significant deviation being observed. In the light of our results, the response mechanism of the electrode is discussed and HMoO2(O2)2 is suggested as the response ion. The proposed electrode has been used to measure molybdenum in ore samples, and the results were in agreement with those obtained by means of ICP analysis.  相似文献   

19.
Somer G  Sezer S  Doğan M  Kalaycı S  Sendil O 《Talanta》2011,85(3):1461-1465
A new borate ion selective electrode using solid salts of Ag3BO3, Ag2S and Cu2S has been developed. Detailed information is provided concerning the composition, working pH and conditioning of the electrode. An analytically useful potential change occurred from 1 × 10−6 to 1 × 10−1 M borate ion. The slope of the linear portion was 31 ± 2 mV/10-fold changes in borate concentration. The measurements were made at constant ionic strength (0.1 M NaNO3) and at room temperature. The effect of Cl, Br, NO3, SO=4, H2PO4 anions and K+, Na+, Cu2+, Ag+, Ca2+ cations on borate response is evaluated and it was found that only Ag+ had a small interference effect. The lifetime of the electrode was more than two years, when used at least 4-5 times a day, and the response time was about 20-30 s. Borate content in waste water of borax factory, tap water of a town situated near to the borax factory and city tap water far from these mines were also determined. The validation was made with differential pulse polarography for the same water sample, and high consistency was obtained.  相似文献   

20.
Continuous-flow (CF) and flow-injection (FI) analysis using the fluoride ion-selective electrode (FISE) as detector have been investigated. The measurements were performed in a home-made cell under appropriate flow conditions (2.86 or 3.45 ml min−1, 0.2 ml samples, 10−6 M sodium fluoride). The calibration graph was obtained by plotting the signal height versus concentration of iron in the range of Fe(III) concentration from 10−5 to 10−1 M in acetate buffer (pH 2.8 or 3.4). In all described procedures, the range of linear response extends to the Fe(III) concentration from 1×10−3 to 1×10−1 M, with detection limit 9×10−5 M. The effect of double-line, two-line flow manifold and CF was investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号