首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase separation behavior and the morphology of polyetherimide (PEI)-modified diglycidyl ether of bisphenol A (DGEBA) epoxy resin were studied using scanning electron microscopy and light scattering. Reaction kinetics, cloud point and onset of gelation were determined by differential scanning calorimeter, optical microscope and physica rheometer, respectively. The mixture of partially cured epoxy and PEI showed bimodal upper critical solution temperature (UCST) behavior. For PEI content smaller than 10 wt%, the blends exhibited a sea-island morphology formed via nucleation and a growth mechanism. Above 25 wt% PEI content, the phase separation proceeded via a spinodal decomposition mechanism and a nodular structure was formed. With PEI content between 15 and 20 wt%, dual phase morphology was observed. This morphology was formed via primary spinodal decomposition and secondary phase separation within the dispersed phases and the matrix phases formed by the primary phase separation. This morphology was presumed to be formed in the reaction-induced phase separation mechanism with the mixture showing bimodal UCST behavior. The curing temperature had an effect on the final morphology, and the modulus of PEI-modified epoxy was influenced by the phase separation.  相似文献   

2.
The phase behavior of statistical copolymers composed of (4‐tert‐butylstyrene) (B) and (4‐tert‐butoxystyrene) (O), abbreviated as s‐BO, with polyisoprene (I) was investigated by optical microscopic (OM) observation and small‐angle neutron scattering (SANS) measurements. It has been known that B/I blend shows lower critical solution temperature (LCST) type phase diagram, while O/I blend has upper critical solution temperature (UCST) type one. Several blends of s‐BOs having mol fraction of B, mB, comparable to 0.50, with I showed both UCST and LCST type phase diagram. Furthermore, UCST type phase behavior was observed for blends having small mB, while LCST type one was for that of large mB at all used temperatures. Hence, the phase behavior of s‐BO/I blend can be understood as a result of the competition of two interactions having opposite temperature dependence. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2272–2280, 2009  相似文献   

3.
Phase behavior of blends of poly(vinyl methyl ether) (PVME) with four styrene-butadiene-styrene (SBS) triblock copolymers, being of various molecular weights, architecture, and compositions, was investigated by small-angle light scattering. Small-angle X-ray scattering investigation was accomplished for one blend. Low critical solution temperature (LCST) and a unique phase behavior, resembling upper critical solution temperature (UCST), were observed. It was found that the architecture of the copolymer greatly influenced the phase behavior of the blends. Random phase approximation theory was used to calculate the spinodal phase transition curves of the ABA/C and BAB/C systems; LCST and resembling UCST phase behavior were observed as the parameters of the system changed. Qualitatively, the experimental and the theoretical results are consistent with each other. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
We describe the initial studies of the complex aqueous phase behavior of poly(trimethylene ether) glycol (PO3G), a renewably sourced polyether glycol. Cloud point measurement revealed that a low molecular weight PO3G exhibits both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) in water in the temperature range between 30°C and 80°C. At low concentrations of PO3G, the polymer solutions exhibit LCST‐type phase behavior. In the intermediate concentration ranges, PO3G and water are immiscible. However, at higher concentrations of PO3G, the solutions show UCST‐type phase behavior. In addition, both the LCSTs and UCSTs can be easily tuned over a wide range by varying the amount of alcohol co‐solvents. These findings have potential applications in the design of personal care applications and in the development of thermosensitive “smart” materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Tetra-n-butylphosphonium type ionic liquids with fumarate anion and maleate anion exhibit different physico-chemical properties and different solubility to water in their cis and trans conformations; fumarate showed the usual upper critical solution temperature (UCST) behavior, whereas maleate had highly unusual lower critical solution temperature (LCST) behavior after mixing with water.  相似文献   

6.
To enhance the heat resistance of poly(styrene‐co‐acrylonitrile‐co‐butadiene), ABS, miscibility of poly(styrene‐co‐acrylonitrile), SAN, with poly(styrene‐con‐phenyl maleimide), SNPMI, having a higher glass transition temperature than SAN was explored. SAN/SNPMI blends casted from solvent were immiscible regardless of copolymer compositions. However, SNPMI copolymer forms homogeneous mixtures with SAN copolymer within specific ranges of copolymer composition upon heating caused by upper critical solution temperature, UCST, type phase behavior. Since immiscibility of solvent casting samples can be driven by solvent effects even though SAN/SNPMI blends are miscible, UCST‐type phase behavior was confirmed by exploring phase reversibility. When copolymer composition of SNPMI was fixed, the phase homogenization temperature of SAN/SNPMI blends was increased as AN content in SAN copolymer increased. To understand the observed phase behavior of SAN/SNPMI blend, interaction energies of blends were calculated from the UCST‐type phase boundaries by using the lattice‐fluid theory combined with a binary interaction model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1131–1139, 2008  相似文献   

7.
Poly(ethylene oxide) (PEO), soluble in both aqueous and organic solvents, is one of the most intriguing polymers. PEO solution properties have been extensively studied for decades; however, many of the studies have focused on specific properties, such as clustering, of PEO in aqueous solutions, and the behavior of PEO in organic solvents has not been adequately explored. The results presented here demonstrate that PEO crystallizes into a lamellar structure in ethyl alcohol after the mixture is quenched to room temperature from a temperature above the crystal melting point. Above the melting temperature, PEO completely dissolves in ethyl alcohol, and the mixture exhibits regular polymer solution thermodynamic behavior with an upper critical solution temperature (UCST) phase diagram. Remarkably, the UCST phase boundary is significantly below the melting temperature, and this indicates that the system undergoes a crystallization process before the phase separation can occur upon cooling and, therefore, possesses an unusual phase transition. The phase transition from the crystalline state to the miscible solution state is reversible upon heating or cooling and can be induced by the addition of a small amount of water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 557–564, 2006  相似文献   

8.
Temperature-responsive phase separations of poly(N-isopropylacrylamide) (PNiPAm)/dimethylsulfoxide (DMSO)/water mixtures have been investigated by infrared and confocal micro-Raman spectroscopy. The ternary mixtures exhibited lower critical solution temperature (LCST) and upper critical solution temperature (UCST) phenomena at low and high DMSO concentrations, respectively. The amide I band of PNiPAm consists of two components; the intensity of the 1650 cm-1 component increased, and that of the 1625 cm-1 component decreased with increasing temperature during both LCST and UCST phase transitions. Gradual red shifts of the C-H stretching and the amide II bands with increasing temperature or increasing DMSO concentration indicate a removal of water molecules from the alkyl and N-H groups. Raman microscopic measurements showed that DMSO is excluded from the polymer-rich phases upon both LCST and UCST phase separation. On the basis of the experimental results and the quantum chemical calculations, a model that explains the solvation change of the polymer during phase transitions was proposed.  相似文献   

9.
Rechargeable battery separators containing controlled pores were fabricated via the thermally-induced phase separation (TIPS) process. Based on the idea that pores could be manipulated by controlling the liquid–liquid phase separation temperature in the TIPS process, phase boundaries of the polymer–diluent systems were controlled by using diluent mixtures. Phase behaviors of the polymer/diluent/diluent ternary blends consisting of polyethylene (PE) as polymer, and soybean oil (SBO) and dioctyl phthalate (DOP) as diluents were explored. PE/SBO and PE/DOP binary blends, and PE/SOB/DOP ternary blends exhibited typical upper critical solution temperature (UCST) type phase behaviors, and the phase separation temperatures of the PE/SBO blends were higher than those of the PE/DOP blends. When the mixing ratio of the polymer and diluent-mixture was fixed, the phase separation temperature of the PE/SBO/DOP blend initially increased with increasing SBO content in the diluent-mixture passing through a maximum centered at about 80 wt% SBO and decreased beyond this point. Furthermore, the phase separation temperature of the PE/diluent-mixture blend was always higher than that of the PE/SBO blend when the diluent-mixture contained more than or equal to 50 wt% SBO. To understand the observed phase behavior of the blends, thermodynamic analyses based on the lattice-fluid theory were performed. Larger pore membranes were fabricated from the blend when higher phase separation temperatures of the blend were exhibited.  相似文献   

10.
研究了同时具有最高临界互溶温度和最低临界互溶温度的羧化聚苯醚/聚苯乙烯共混体系随退火温度的变化而发生的相形态结构的变化.研究了此共混体系的相分离机理.并发现了此特殊共混体系低温和高温区的相分离机理是不同的.从分子的结构和分子间特殊相互作用上探讨了此共混体系产生特殊相行为的原因.  相似文献   

11.
This review focuses on polymers with upper critical solution temperature (UCST) in water or electrolyte solution and provides a detailed survey of the yet few existing examples. A guide for synthetic chemists for the design of novel UCST polymers is presented and possible handles to tune the phase transition temperature, sharpness of transition, hysteresis, and effectiveness of phase separation are discussed. This review tries to answer the question why polymers with UCST remained largely underrepresented in academic as well as applied research and what requirements have to be fulfilled to make these polymers suitable for the development of smart materials with a positive thermoresponse.  相似文献   

12.
Low molecular weight liquid rubber (ATBN = amine terminated butadiene acrylonitrile copolymer or CTBN = carboxyl terminated butadiene acrylonitrile copolymer)–DGEBA (diglycidyl ether of bisphenol A) blends indicated upper critical solution temperature (UCST) behavior. The phase separation behavior of the neat and crosslinked rubber (ATBN, CTBN)–epoxy blends was analyzed by a laser light scattering experiment. Lauryl peroxide (LPO) was employed to crosslink the rubber during the initial annealing stage. The onset point of the phase separation in the crosslinked ATBN–epoxy system occurred later than in the case of the neat ATBN–epoxy system. However, the onset point of the phase separation process started earlier in the case of the crosslinked CTBN–epoxy system. The domain correlation length of the crosslinked rubber-added system was smaller than that of the neat rubber-added system.  相似文献   

13.
We developed a simple and improved expression for the Helmholtz energy of mixing which uses a Taylor series of an exponential function based on extending the Redlich-Kister expansion. This model incorporates the chain-length dependence of polymers and specific interactions such as hydrogen bonds. The proposed model can accurately predict most phase diagrams of various binary polymer solutions including upper critical solution temperature (UCST), lower critical solution temperature (LSCT), both UCST and LCST, and closed miscibility loops. Our model fits experimental data of the complex phase behavior of polymer solutions well.  相似文献   

14.
Here, we describe the thermosensitive reversible phase transition behaviors of polyelectrolyte complex composed of gelatin and chitosan (G/C complex). An aqueous dispersion of the G/C complexes showed a clear upper critical solution temperature (UCST) at around 30°C. The thermosensitive phase transition behavior showed excellent reversibility and large thermal hysteresis as a usual phenomenon based on the intra‐ and inter‐molecular interaction change. A high correlation was observed between the UCST of the G/C complex and the helix‐melting temperature of gelatin by circular dichroism, which suggested that the phase transition of the G/C complex corresponded to the secondary structure (helix‐coil) transition of gelatin. Notably, the UCST of the G/C complex shifted to lower temperatures in the presence of urea, which is well known to destabilize gelatin, whereas the addition of salt led to the dissolution of the G/C complex. It is envisaged that the results of this study will have a significant impact on the fabrication of UCST‐type thermosensitive materials, which can be utilized under aqueous physiological conditions using well‐known biopolymers. This protein‐derived functional material, which responds to the secondary structure transition, could also be used for the development of novel UCST‐type thermosensitive biomaterials. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of ionic strength, temperature, and pH on the phase separation behavior of type B pigskin gelatin/sodium-type kappa-carrageenan aqueous mixtures were investigated. Depending on the different combinations of temperature and sodium chloride (NaCl) concentration, the mixtures showed compatible, associative, and segregative phase separation behaviors. Additionally, a coexistence of associative and segregative (associative-co-segregative) phase separations was expected at low temperature and low NaCl concentration. These different phase separation events were observed using confocal scanning laser microscopy. Moreover, it was found that the segregative phase separation when alone is induced by the ordering of kappa-carrageenan chains, while that in the coexistence region is induced by the ordering of gelatin chains. pH had a significant effect on the associative phase separation, resulting in morphologies changing from compatible solution to liquid coacervate and further to solid precipitate with decreasing pH. These were attributed to the dramatic changes of the charge density of amphoteric gelatin during the pH decrease.  相似文献   

16.
An upper critical solution temperature (UCST)‐type self‐oscillating polymer was designed that exhibited rhythmic soluble–insoluble changes induced by the Belousov–Zhabotinsky (BZ) reaction. The target polymers were prepared by conjugating Ru(bpy)3, a catalyst for the BZ reaction, to ureido‐containing poly(allylamine‐co‐allylurea) (PAU) copolymers. The Ru(bpy)3‐conjugated PAUs exhibited a UCST‐type phase‐transition behavior, and the solubility of the polymer changed in response to the alternation in the valency of Ru(bpy)3. The ureido content influences the temperature range of self‐oscillation, and the oscillation occurred at higher temperatures than conventional LCST‐type self‐oscillating polymers. Furthermore, the self‐oscillating behavior of the Ru‐PAU could be regulated by addition of urea, which is a unique tuning strategy. We envision that novel self‐oscillating polymers with widely tunable soluble‐insoluble behaviors can be rationally designed based these UCST‐type polymers.  相似文献   

17.
对几种不同热塑性树脂改性热固性树脂体系反应诱导相分离过程,包括UCST(最高互溶温度)、LCST(最低互溶温度)体系和含有复杂多步反应体系,在耐高温高分辨热台显微镜、流变仪和小角激光光散射仪上进行了研究.发现体系的反应诱导相分离时间/温度关系遵循Arrhenius方程.其相分离活化能对体系反应速率、粘弹性变化、体系中热塑性树脂的含量和分子量不敏感,也不受相分离检测手段的影响,而依赖于树脂化学环境相容性和交联反应的温度依赖性.对这一共性的物理本质进行了讨论.  相似文献   

18.
Water-soluble thermoresponsive polymers present either upper critical solution temperature(UCST) or lower critical solution tempe rature(LCST) depending on the location of their miscibility range with water at high temperatures or at low temperatures.Compared with LCST polymers,the water-soluble UCST polymers are still less explored until now.In this work three copolymers of P(AAm-co-GAA) were synthesized by copolymerizing two acrylamide monomers,acrylamide(AAm) and acrylamide functionalized with natural glycyrrhetinic acid(GAA),using reversible addition-fragmentation chain transfer(RAFT) polymerization.These copolymers exhibited the typical UCST thermoresponsive behavior,and their phase transition temperatures could be easily tuned to around 37℃ for potential biological applications.Moreover,the UCST of P(AAm-co-GAA) can be adjusted not only by the content of glycyrrhetinic acid(GA) and polymer concentrations,but also by the host-guest interactions between GA and cyclodextrins(β-and γ-CD).The suitable value of UCST and the biocompatible nature of GA and CDs may endow these copolymers with practical applications in biomedical chemistry.  相似文献   

19.
The battery separator plays a key role in determining the capacity of the battery. Since separator performance mainly depends on the pore size of membrane, development of a technique for the fabrication of the membrane having controlled pore size is essential in producing a highly functional battery separator. In this study, microporous membranes having the desired pore size were produced via thermally‐induced phase separation (TIPS) process. Control of the phase boundaries of polymer‐diluent blends is the main concern in manipulating pore size in TIPS process, because pore size mainly depends on the temperature gap between phase separation temperature of the blend and the crystallization temperature of polymer. Microporous membranes having controlled pore size were produced from polyethylene (PE)/dioctyl phthalate (DOP) blends, PE/isoparaffin blends, and polymer/diluent‐mixture ternary blends, that is, PE/(DOP/isoparaffin) blends. PE/DOP binary blends and PE/(DOP/isoparaffin) ternary blends exhibited typical upper critical solution temperature (UCST) type phase behavior, while PE formed a homogeneous mixture with isoparaffin above the crystallization temperature of PE. When the mixing ratio of polymer and diluent‐mixture was fixed, the phase separation temperature of PE/diluent‐mixture blend first increased with increasing DOP content in the diluent‐mixture, went through a maximum centered at about 80 wt % DOP and then decreased. Furthermore, the phase separation temperatures of the PE/diluent‐mixture blends were always higher than that of the PE/DOP blend when diluent‐mixture contained more than or equal to 20 wt % of DOP. Average pore size of microporous membrane prepared from PE/DOP blend and that prepared from PE/isoparaffin blend were 0.17 and 0.07 μm, respectively. However, average pore size of microporous membrane prepared from ternary blends was varied from 0.07 to 0.5 μm by controlling diluent mixing ratio. To understand the phase behavior of ternary blend, phase instability of the ternary mixture was also explored. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2025–2034, 2006  相似文献   

20.
A novel copolymer based on supramolecular motif 2,6‐diaminopyridine and water‐soluble acrylamide, poly[N‐(6‐acetamidopyridin‐2‐yl) acrylamide‐co‐acrylamide], was synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization with various monomer compositions. The thermoresponsive behavior of the copolymers was studied by turbidimetry and dynamic light scattering (DLS). The obtained copolymers showed an upper critical solution temperature (UCST)‐type phase transition behavior in water and electrolyte solution. The phase transition temperature was found to increase with decreasing amount of acrylamide in the copolymer and increasing concentration of the solution. Furthermore, the phase transition temperature varied in aqueous solutions of electrolytes according to the nature and concentration of the electrolyte in accordance with the Hoffmeister series. A dramatic solvent isotope effect on the transition temperature was observed in this study, as the transition temperature was almost 10–12 °C higher in D2O than in H2O at the same concentration and acrylamide composition. The size of the aggregates below the transition temperature was larger in D2O compared to that in H2O that can be explained by deuterium isotope effect. The thermoresponsive behavior of the copolymers was also investigated in different cell medium and found to be exhibited UCST‐type phase transition behavior in different cell medium. Such behavior of the copolymers can be useful in many applications including biomedical, microfluidics, optical materials, and in drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2064–2073  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号