首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel dimeric capsules are generated from the noncovalent assembly of 5, 10, 15, 20-tetrakis(4-N-ethylpyridiniurmyl)prophyrin (TEPyP) and tetracarboxyl-phenyl calix[4]arene. The self-assembly system was investigated based on UV-Vis absorption and fluorescent spectra. The factors affecting the interaction process including pH and concentration were examined in detail. The association constants between TEPyP and calix[4]arene were determined by the nonlinear least squares fit. The results showed that the basic medium is favourable to the interaction and electrostatic interaction was determinate in the processes of self-assembly process. The related mechanism was discussed.  相似文献   

2.
A stable colloidal TiO(2) has been prepared. The interaction of meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) with colloidal TiO(2) was studied by absorption and fluorescence spectroscopy. Upon excitation of its absorption band, the fluorescence emission of TSPP was quenched by colloidal TiO(2). The bimolecular quenching rate constant (k(q)) is 1.78 x 10(11)M(-1)s(-1). The porphyrin can participate in the quenching process by injecting electrons from its excited states into the conduction band of TiO(2). The quenching mechanism is discussed on the basis of the quenching rate constant as well as the reduction potential of the colloidal TiO(2). Rehm-Weller equation was applied for the calculation of free energy change (DeltaG(et)).  相似文献   

3.
Six series of meso-tetrakis (4-n-alkanoyloxyphenyl) porphyrin Co and Ni complexes (12 kinds) were reported. Nine of the compounds were found to exhibit liquid crystal properties and display a hexago-nal columnar discotic columnar (Colh) phase. Molecular structure of all synthesized compounds was confirmed by IR, UV, MS, 1H NMR, and elemental analysis. These liquid crystalline compounds have been studied by cyclic voltammetry, luminescence, and surface photovoltage spectroscopy.  相似文献   

4.
Chi Y  Chen J  Aoki K 《Inorganic chemistry》2004,43(26):8437-8446
Electrochemical generation of free nitric oxide (NO) from nitrite (NO(2)(-)) catalyzed by iron meso-tetrakis(4-N-methylpyridiniumyl)porphyrin, [Fe(III)(TMPyP)](5+), has been developed in this study. To obtain free NO, a cathodic electrolysis and an anodic electrolysis were performed in two connected flow electrolytic cells in sequence. The flow electrolytic cell upstream was used for cathodic electrolysis, where the solution of [Fe(III)(TMPyP)](5+) and NO(2)(-) was reduced at -0.25 V (vs Ag/AgCl) into [Fe(II)(NO(2)(-))(2)(TMPyP)](2+) and [Fe(II)(NO)(TMPyP)](4+) in sequence. The flow electrolytic cell downstream was utilized for anodic electrolysis, where [Fe(II)(NO)(TMPyP)](4+) formed from the upstream cell was oxidized at +0.40 V (vs Ag/AgCl) into [Fe(III)(TMPyP)](5+) and free NO. Finally, NO was bubbled out from anodic electrolyte by argon gas. The mechanism and the optimum conditions for electrochemical generation of NO from NO(2)(-) catalyzed by [Fe(III)(TMPyP)](5+) were studied in detail by voltammetric and spectroelectrochemical methods.  相似文献   

5.
6.
[Ru(II)(F(20)-tpp)(CO)] (1, F(20)-tpp=meso-tetrakis(pentafluorophenyl)porphyrinato dianion) was covalently attached to poly(ethylene glycol) (PEG) through the reaction of 1 with PEG and sodium hydride in DMF. The water-soluble PEG-supported ruthenium porphyrin (PEG-1) is an efficient catalyst for 2,6-Cl(2)pyNO oxidation and PhI==NTs aziridination/amidation of hydrocarbons, and intramolecular amidation of sulfamate esters with PhI(OAc)(2). Oxidation of PEG-1 by m-CPBA in CH(2)Cl(2), dioxane, or water afforded a water-soluble PEG-supported dioxoruthenium(VI) porphyrin (PEG-2), which could react with hydrocarbons to give oxidation products in up to 80 % yield. The behavior of the two PEG-supported ruthenium porphyrin complexes in water was probed by NMR spectroscopy and dynamic light-scattering measurements. PEG-2 is remarkably stable to water. The second-order rate constants (k(2)) for the oxidation of styrene and ethylbenzene by PEG-2 in dioxane-water increase with water content, and the k(2) values at a water content of 70 % or 80 % are up to 188 times that obtained in ClCH(2)CH(2)Cl.  相似文献   

7.
Interaction of meso-tetrakis(4-sulphonatophenyl)porphine (TPPS4) with chitosan (Mr approximately 400 kDa, N-acetyls approximately 20 mol.%) was studied in aqueous solutions. UV-vis absorption and circular dichroism (CD) spectroscopic titration of 10 micromol l-1 TPPS4 with chitosan demonstrated that an addition of the polysaccharide at appropriate concentrations and pH values induce and support self-aggregation of the macrocycles. The mode of aggregation was strongly dependent on pH: stacking (H-type) aggregates predominated at weak acidic conditions (pH 4.8-6.8) and tilted (J-type) aggregates at pH 2.5. At the intermediate pH value (3.6) both types of TPPS4 aggregates were detected. High amount of chitosan (>0.05 mmol l-1 of GlcN) disrupts H-aggregates forming monomeric porphyrin-chitosan complexes (pH 3.6-6.8), while J-aggregates (pH 2.5) are stable even at very high chitosan concentrations. CD titration experiments confirmed the formation of optically active species of TPPS4 in the presence of chitosan. The complex nature of CD bands assigned to both types of porphyrin aggregates indicated the occurrence of several chiral macrocyclic species dependently on pH value and chitosan concentration.  相似文献   

8.
The ability of beta-cyclodextrin (beta-CD), sulfurbutylether-beta-CD (SBE-beta-CD) and hydroxypropyl-beta-CD (HP-beta-CD) to break the aggregate of the meso-Tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) and to form 2:1 inclusion complexes has been studied by adsorption and fluorescence spectroscopy. The formation constants are calculated, respectively by fluoremetry, from which the inclusion capacity of different CDs is compared and the inclusion mechanism of charged-beta-CD (SBE-beta-CD) is quite different from that of parent beta-CD. At lower pH, the complexation between HP-beta-CD and H2TPPS(2+)4 (the form of the diprotonated TPPS4) hampers the continuous protonation of the pyrrole nitrogen of TPPS4 and the hydrophobic cavity may prefer to bind an apolar neutral porphyrin molecule. 1HNMR data support the inclusion conformation of the porphyrin-cyclodextrin supramolecular system, indicating the interaction of meso-phenyl groups of TPPS4 with the cavity of CDs. For this host-guest inclusion model, cyclodextrin, being regarded as the protein component, which acts as a carrier enveloping the active site of heme prosthetic group within its hydrophobic environment, provides a protective sheath for porphyrin, creating artificial analogues of heme-containing proteins. However, the TPPS4, encapsulated within this saccharide-coated barrier, its physico-chemical, photophysical and photochemical properties changed strongly.  相似文献   

9.
The interaction of the cationic meso-tetrakis 4-N-methylpyridyl porphyrin (TMPyP) with large unilamellar vesicles (LUVs) was investigated in the present study. LUVs were formed by mixtures of the zwitterionic 1,2-dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC) and anionic 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) phospholipids, at different DPPG molar percentages. All investigations were carried out above (50 °C) and below (25 °C) the main phase transition temperature of the LUVs (~41 °C). The binding constant values, K(b), estimated from the time-resolved fluorescence study, showed a significant increase of the porphyrin affinity at higher mol% DPPG. This affinity is markedly increased when the LUVs are in the liquid crystalline state. For both situations, the increase of the K(b) value was also followed by a higher porphyrin fraction bound to the LUVs. The displacement of the vesicle-bound porphyrins toward the aqueous medium, upon titration with the salt potassium chloride (KCl), was also studied. Altogether, our steady-state and frequency-domain fluorescence quenching data results indicate that the TMPyP is preferentially located at the LUVs Stern layer. This is supported by the zeta potential studies, where a partial neutralization of the LUVs surface charge, upon porphyrin titration, was observed. Dynamic light scattering (DLS) results showed that, for some phospholipid systems, this partial neutralization leads to the LUVs flocculation.  相似文献   

10.
5,10,15,20-Tetrakis(4-N-ethylpyridiniurmyl)porphyrin (TEPyP) formed 1:1 stoichiometry inclusion complexes with beta-cyclodextrin (beta-CD) and its derivatives including hydroxypropyl-beta-cyclodextrin (HP-beta-CD), sulfobutylether-beta-cyclodextrin (SBE-beta-CD) in basic aqueous solution. The supramolecular system was investigated by the methods of fluorescence, UV-vis absorption spectroscopy, nuclear magnetic resonance (NMR) technique. The inclusion ability of cyclodextrins exhibited remarkable difference for beta-CD, HP-beta-CD and SBE-beta-CD. Association constants as high as K=1.1 x 10(4) M(-1) in the case of HP-beta-CD/TEPyP and 2.0 x 10(5) M(-1) in the case of SBE-beta-CD/TEPyP complexes were determined, whereas a lower value (K=550 M(-1)) was given in the case of beta-CD/TEPyP. The results showed that hydrogen bonding and charge attraction play important roles in the processes of host-guest interaction. The interaction mechanism of inclusion processes could be explained by the analysis of NMR spectroscopy. The supramolecular assembly was formed. beta-CD and HP-beta-CD approached from the primary face of cavities of CDs.  相似文献   

11.
2,3-Di-O-myristyl-6-O-(zinc(II) phthalocyaninyl) cellulose (5) was synthesized from cellulose (1) by five reaction steps via 6-O-(3′,4′-dicyanophenyl)-2,3-di-O-myristyl cellulose (4). The key reaction was phthalocyanine-ring formation on a cellulose backbone, that is, the reaction of compound 4 with o-phthalodinitrile in the presence of hexamethyldisilazane and zinc acetate in DMF afforded to compound 5 in 35.4 % yield. Consequently, the degree of substitution with phthalocyanine moieties of compound 5 was 0.38. The LB monolayer film of compound 5 on an indium tin oxide (ITO) electrode was found to show photocurrent generation performance at 680 nm.  相似文献   

12.
13.
An ortho-dimethyl substituted meso-tetrakisarylporphyrin prefunctionalized with triflate groups was prepared in good yield from an accessible 2,6-dimethyl-4-(triflyloxy)benzaldehyde. This porphyrin is an interesting building block, which could directly be engaged in Suzuki cross-coupling reactions, to be further tetra functionalized with 3-pyridyl ligands in yields equal or above 85%. The porphyrin core of the various compounds bearing four remote coordination sites was metalated with zinc(II). The molecular structures of the starting triflate porphyrin derivative and of the zinc(II) porphyrin substituted with four 3-pyridyl groups bearing a protected alcohol were determined using X-ray crystallography.  相似文献   

14.
Reaction of metal exchange of Mg(II) and Cd(II) octa(4-bromophenyl)tetraazaporphyrinates with MnCl2 in dimethylformamide has been studied by means of spectrophotometry. Kinetic parameters of the reaction have been determined; the reaction stoichiometry mechanism has been suggested.  相似文献   

15.
利用6-(4-卤代苯基)-3(2H)-哒嗪酮的银盐(2)与2,3,4,6-四-O-乙酰基-1-溴-1-脱氧-α-D-吡喃葡萄糖(3)发生Koenigs-knorr反应, 合成了3-O-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-6-(4-卤代苯基)哒嗪(4),4用干燥的氨气在0℃~-5℃下处理脱乙酰基保护基得相应的3-O-(β-D-吡喃葡萄糖-1-基)-6-(4-卤代苯基)哒嗪(5).其结构经元素分析,IR及1H NMR证实.  相似文献   

16.
Zheng SL  Yu WY  Che CM 《Organic letters》2002,4(6):889-892
[reaction: see text] Ruthenum(II) porphyrins and dirhodium(II) acetate catalyze cyclization of gamma-alkoxy-alpha-diazo-beta-ketoesters to (Z)-4-(alkyloxycarbonylmethylidene)-1,3-dioxolanes selectively (ca. 68% yield) with no formation of 3(2H)-furanones. Reacting a diazo ketoester with [Ru(II)(TTP)(CO)] [H(2)TTP = meso-tetrakis(p-tolyl) porphyrin] in toluene afforded a ruthenium carbenoid complex, which has been isolated and spectroscopically characterized. A mechanism involving hydrogen atom migration from the C-H bond to the ruthenium carbenoid is proposed.  相似文献   

17.
The reactive intermediates N,N-di(4-chlorophenyl)nitrenium ion and N,N-di(4-bromophenyl)nitrenium ion were generated through photolysis of the corresponding N-amino(2,4,6,-collidinium) ions. The behavior of these diarylnitrenium ions was characterized by laser flash photolysis, analysis of the stable photoproducts, and ab initio calculations with density functional theory. The latter predict these species to have singlet ground states. The halogenated diarylnitrenium ions are significantly longer lived than the unsubstituted diphenylnitrenium ion. Specifically, cyclization to form carbazole derivatives occurs negligibly, if at all, with the halogenated derivatives. They do, however, carry out most of the characteristic reactions of singlet arylnitrenium ions, including combining with nucleophiles on the aryl rings, adding to arenes, and accepting electrons from readily oxidized traps. Interestingly these species also abstract H atoms from 1,4-cyclohexadiene and various phenol derivatives. The implication of the latter process in relation to the computed singlet-triplet energy gaps of ca. -12.5 kcal/mol is discussed.  相似文献   

18.
19.
[(η-C5H5)Ru{Ph2PCHRCHR′PPh2}({C(OCH3)CH2C6H5})]PF6 (where R, R′ = H or CH3) reacts with LiAlH4 in THF at ?80° C to give the corresponding 2-phenylethyl complexes, which have an antiperiplanar conformation around the H2CCH2 bond in solution; the reaction takes place with retention of configuration at the ruthenium atom.  相似文献   

20.
The complexes [Pt(ER3)(CO)Cl2] (E = P, As; R = aryl, alkyl) are active precursors for the catalytic hydroformylation of olefins in the presence of added tin(II) chloride. The yield of aldehyde may be maximized by systematic parameter variation and is shown to be limited by the degree of steric crowding at the metal centre. Terminal aliphatic monoenes are hydroformylated readily with a high n : iso ratio; hindered internal olefins, cyclic and conjugated aromatic olefins are less readily hydroformylated, but with no competing hydrogenation. The catalyst system is active under mild conditions of temperature and pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号