首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this paper we report results of both, material preparation and magnetic characterisation, on CoFe2O4 particles of nanometric size formed by in‐situ precipitation within polymer gels. The size of the particles was controlled within a very narrow volume distribution and its average value was shifted from 2 to 10 nm. The existence of nanoparticles showing, at room temperature, coercive field values between 500 and 900 Oe and saturation magnetisations of about 500 emu/cm3, suggest to use these systems to get magnetic recording media with ultra high density. Poly(vinyl alcohol) (PVA) and Polystyrene (PS) films were prepared from this nanocomposite material. After a magnetic field treatment nanoparticles within the PVA films are free to rotate in response to an applied magnetic field. This PVA based nanocomposite film portends a new class of magnetic material with very little or no electrical and magnetic loss.  相似文献   

2.
Carbon encapsulated magnetic nanoparticles(CEMNs)were synthesized by heating an aqueous glucose solution containing Fe-Au(Au coated Fe nanoparticles)nanoparticles at 160-180℃ for 2 h.This novel hydrothermal approach is not only simple but alsoprovides the surface of CEMNs with functional groups like-OH.The formation of carbon encapsulated magnetic nanoparticles wasnot favored when using pure Fe nanoparticles as cores because of the oxidation of Fe nanoparticles by H2O during the reaction and,therefore,the surfaces of the naked Fe nanoparticles had to be coated by Au shell in advance.TEM,XRD,XPS and VSMmeasurments characterized that they were uniform carbon spheres containing some embedded Fe-Au nanoparticles,with asaturation of 14.6 emu/g and the size of the typical product is$350 nm.  相似文献   

3.
Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent.  相似文献   

4.
Magnetic nanoparticles represent emerging tools in biomedical and pharmaceutical research. Because in most cases, the surfaces of these nanoparticles are hydrophobic, surface modifiers are usually applied to stabilize the colloidal suspension in an aqueous media. This investigation reports a simple technique for the preparation of MnFe2O4 synthesized within polyvinylamine (PVAm) nanoparticle reactors. Magnetite nanoparticles were previously synthesized using a similar scheme; however, substituting MnFe2O4 for Fe3O4 improved nanoparticle magnetization properties and further established the synthetic approach. PVAm nanoparticles exhibited more than 18% manganese ferrite loading by weight, a saturation magnetization of ~ 40 emu/g of MnFe2O4, excellent colloidal stability, and reactive primary amines for possible drug conjugation or surface modification. Transmission electron micrographs revealed that the dispersions contained ~ 50 nm PVAm nanoparticles incorporating manganese ferrite particles with a size less than ~ 7 nm. This reaction scheme further justifies a unique synthetic methodology for magnetic nanoparticles offering potential use in contrast‐enhanced magnetic resonance imaging or drug delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 991–996, 2010  相似文献   

5.

The effect of hydrogen reduction temperature on the properties of Fe–Ni powders was described. The mixed powders of Fe-oxide and NiO were prepared by chemical solution mixing of nitrates powders and calcination at 350 °C for 2 h in air. The calcined powders formed small agglomeration with an average particle size of 100 nm. The microstructure and magnetic properties were investigated by using X-ray diffractometry, thermogravimetry, differential thermal analyzer, and vibrating sample magnetometer. Microstructure and thermal analysis revealed that the Fe-oxide and NiO phase were changed to FeNi3 phase in the temperature range of 245–310 °C, and by heat-up to 690 °C the FeNi3 phase was transformed to γ-FeNi phase. The reduced powder at 350 °C showed saturation magnetization of 76.3 emu/g and coercivity of 205.5 Oe, while the reduced powders at 690 °C exhibited saturation magnetization of 84.0 emu/g and coercivity of 14.0 Oe. The change of magnetic properties was discussed by the observed microstructural features.

  相似文献   

6.
Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer, and particles were collected on transmission electron microscopy (TEM) grids and glass fiber filters for off-line characterization. The morphology, chemical and phase composition of the nanoparticles were characterized using TEM and X-ray diffraction, and the magnetic properties of the particles were analyzed with a vibrating sample magnetometer and a magnetic property measurement system. Aerosol at the reactor exhaust consisted of both single nanocrystals and small agglomerates, with a modal mobility diameter of 8?C9?nm. Powder synthesized with optimum oxygen flow rate consisted primarily of magnetite (Fe3O4), and had a room-temperature saturation magnetization of 40.15 emu/g, with a coercivity and remanence of 26 Oe and 1.5 emu/g, respectively.  相似文献   

7.
Magnetic NiFe2O4 (NiFe) nanoparticles were synthesized via a facile chemical reaction between Ni(NO3)2 and Fe(NO3)3. Different percents of NiFe nanoparticles were then added to polystyrene (PS) matrix. Nanoparticles were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The magnetic properties of the samples were also investigated using an alternating gradient force magnetometer. The nanoparticles exhibit ferromagnetic behaviour at room temperature, with a saturation magnetization of 20.8 emu/g and a coercivity of 99.6 Oe. Preparation of NiFe2O4 -PS nanocomposite leads to decrease in the coercivity.  相似文献   

8.
The ferromagnetic and photocatalytic properties of pure ZnO, Zn0.97Gd0.01Li0.02O, Zn0.97Gd0.01Na0.02O, Zn0.97Gd0.01Mn0.02O and Zn0.97Gd0.01Fe0.02O nanoparticles prepared by sol-gel technique were investigated. The XRD, EDX, HR-TEM, FTIR and diffuse reflectance analyses confirm the formation of single phase ZnO wurtzite structure with effective incorporation of Gd/Li, Na, Mn or Fe ions into ZnO host lattice. Based on Kubelka-Munk equation, the optical band gap of pure ZnO nanoparticles was estimated to be 3.22 eV and implantation of Gd-based dual dopants induces red shifts between 0.01 and 0.29 eV. For pure ZnO nanoparticles, noticeable ferromagnetic performance was observed with saturation magnetization of 0.0133 emu/g and coercivity of 85 Oe. The binary dopants of Gd/Mn or Na induce strong enhancements in the saturation magnetization of pure ZnO nanoparticles. Where, Zn0.97Gd0.01Na0.02O and Zn0.97Gd0.01Mn0.02O samples exhibited perfect hysteresis loops with saturation magnetization of 0.34 and 0.717 emu/g, respectively. Higher photocatalytic activity, 97%, for methyl orange degradation was observed for Zn0.97Gd0.01Na0.02O nanoparticles within 210 min under UV irradiation. The particles size and agglomeration, ionic radii of dopants and recombination centers have main effects on the photocatalytic activity performance of ZnO nanoparticles. The dual dopants of Gd/Mn efficiently trigger the room temperature ferromagnetism of the pure ZnO; but Gd/Na blend revealed the best effect in methyl orange degradation (97%).  相似文献   

9.
We investigate the effect of digestion time and alkali addition rate on the size and magnetic properties of precipitated magnetite nanoparticles. It is observed that the time required to complete the growth process for magnetite nanocrystals is very short (approximately 300 s), compared to long digestion times (20-190 min) required for MnO and CdSe nanocrystals. The rapid growth of magnetite nanoparticles suggests that Oswald ripening is insignificant during the precipitation stage, due to the low solubility of the oxides and the domination of a solid-state reaction where high electron mobility between Fe2+ and Fe3+ ions drives a local cubic close-packed ordering. During the growth stage (0-300 s), the increase in the particle size is nominal (6.7-8.2 nm). The effect of alkali addition rate on particle size reveals that the nanocrystal size decreases with increasing alkali addition rate. The particle size decreases from 11 to 6.8 nm as the alkali addition rate is increased from 1 to 80 mL/s. During the size decrease, the lattice parameter decreases from 0.838 to 0.835 nm, which is attributed to an increase in the amount of Fe3+ atoms at the surface due to oxidation. As the alkali addition rate increases, the solution reaches supersaturation state rapidly leading to the formation of large number of initial nuclei at the nucleation stage, resulting in large number of particles with smaller size. When alkali addition rate is increased from 1 to 80 mL/s, the saturation magnetization of the particles decreases from 60 to 46 emu/g due to the reduced particle size.  相似文献   

10.
A method applying soap-free emulsion polymerization with an amphoteric initiator, 2,2′-azobis[N-(2-carboxyethyl)-2-2-methyl-propionamidine], is proposed for synthesis of highly monodisperse particles composed of magnetic nanoparticles (Fe3O4/γ–Fe2O3) and polystyrene. The magnetic nanoparticles were pretreated by surface modification for introducing double bonds onto the particles. In the polymerization, magnetic nanoparticles were continuously supplied to the system for a certain period after the initiation of polymerization at various pH. Dissociation degrees of ionizable groups in the initiator molecules were controlled through pH by changing NH3 concentrations at a constant NH4Cl concentration. Selection of suitable pH in the polymerization could produce polymer particles that perfectly incorporated the supplied magnetic nanoparticles. The magnetic polymer particles had a coefficient of variation of size distribution as low as 4.3% with an average diameter of 515 nm and a saturation magnetization of 7.3 emu/g-sample. Electrophoresis measurements indicated that the magnetic polymer particles had an isoelectric point of pH 4.1.  相似文献   

11.
LaFeO3 nanoparticles (30–40 nm) have been prepared via the sol-gel method using polyvinyl alcohol as a stabilizer. Addition of polyvinyl alcohol results in the formation of smaller LaFeO3 particles and decreases the temperature of transition into the single-phase product as compared with the samples prepared via precipitation with aqueous ammonia. Residual magnetization, magnetization at saturation, and coercive force of LaFeO3 nanoparticles are monotonous decreasing functions of the nanopowder annealing temperature.  相似文献   

12.
首先将(马来酸酐-醋酸乙烯酯共聚物)核/(马来酸酐-二乙烯基苯共聚物)壳微球的壳层外表面酐基烷基溴化,然后将核溶蚀、壳层内表面酐基水解,制得内表面含亲水羧基、外表面含烷基溴、具有微孔(Barrett-Joyner-Halenda平均孔径14.9nm)的空心聚合物微球.以此空心微球为微反应器,使Fe2+和Fe3+通过球壁...  相似文献   

13.
PREPARATION AND CHARACTERIZATION OF PVA COATED MAGNETIC NANOPARTICLES*   总被引:4,自引:0,他引:4  
Polyvinyl alcohol coated magnetic particles (PVA ferrofluids) have been synthesized by chemical co-precipitationof Fe(Ⅱ)/Fe(Ⅲ) salts in 1.5 mol/L NH_4OH solution at 70℃ in the presence of PVA. The resultant colloidal particles havecore-shell structures, in which the iron oxide crystallites form the cores and PVA chains form the shells. The hydrodynamicdiameter of the colloidal particles is in the range of 108 to 155 nm, which increases with increasing PVA concentration from5 wt% to 20 wt%. The size of the magnetic cores is ca. 5~10 nm, which is relatively independent of PVA concentration.Under transmission electron microscopic (TEM) examination, the magnetic cores exhibit somewhat irregular shapes varyingfrom spherical, oval, to cubic. Magnetometry measurement revealed that the PVA coated magnetic particles aresuperparamagnetic. The saturation magnetization of 5 wt% and 20 wt% PVA ferrofluids at 300 K is 54 and 49 emu/g.respectively. All the PVA ferrofluids exhibited excellent colloidal stability in pure water and phosphate buffer saline (PBS,pH=7.4). The ferrofluids can remain stable in above solutions for more than three months at 4℃.  相似文献   

14.
Nanocrystalline nickel ferrite (NiFe2O4) powder was prepared by a co-precipitation method from Ni and Fe chlorides. The as-prepared samples were characterized by powder X-ray diffractometry (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry (VSM). SEM and TEM indicated that the particles were spherical with particle sizes in the range 25 ± 5 nm. The magnetic properties of the sample were measured by using a vibrating sample magnetometer, which showed that the sample exhibited typical ferromagnetic behavior at room temperature, while a finite coercivity of 245.5 Oe was present at 300 K. The saturation magnetization of the sample (23.13 emu/g) was significantly lower than that for the reported multidomain bulk particles (55 emu/g), reflecting the ultrafine nature of the sample.  相似文献   

15.
Magnetic nickel ferrite (NiFe2O4) was prepared by sol–gel process and calcined in the 2.45 GHz singlemode microwave furnace to synthesize nickel nanopowder. The sol–gel method was used for the processing of the NiFe2O4 powder because of its potential for making fine, pure and homogeneous powders. Sol–gel is a chemical method that has the possibility of synthesizing a reproducible material. Microwave energy is used for the calcining of this powder and the sintering of the NiFe2O4 samples. Its use for calcination has the advantage of reducing the total processing time and the soak temperature. In addition to the above combination of sol–gel and microwave processing yields to nanoscale particles and a more uniform distribution of their sizes. X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and vibrating sample magnetometer were carried out to investigate structural, elemental, morphological and magnetic aspects of NiFe2O4. The results showed that the mean size and the saturation magnetization of the NiFe2O4 nanoparticles are about 30 nm and 55.27 emu/g, respectively. This method could be used as an alternative to other chemical methods in order to obtain NiFe2O4 nanoparticles.  相似文献   

16.
Superparamagnetic polymer nanofibers intended for drug delivery and therapy are considered here. Magnetite (Fe3O4) nanoparticles in the diameter range of 5-10 nm were synthesized in aqueous solution. Polymer nanofibers containing magnetite nanoparticles were prepared from commercially available poly(hydroxyethyl methacrylate), PHEMA, and poly-L-lactide (PLLA) by the electrospinning technique. Nanofibers with diameters ranging from 50 to 300 nm were obtained. Nanofibers containing up to 35 wt % magnetite nanoparticles displayed superparamagnetism at room temperature. The blocking temperature was about 50 K for an applied field of 500 Oe, and the saturation magnetization was 3.5 emu g(-1) and 1.1 emu g(-1) for Fe3O4/PHEMA and Fe3O4/PLLA nanofibers, respectively, and depended on the amount of Fe3O4 nanoparticles in the nanocomposites. To test such magnetic nano-objects for applications as drug carriers and drug-release systems we incorporated a fluorescent albumin with dog fluorescein isothiocyanate (ADFI).  相似文献   

17.
We report the controlled synthesis of exchange‐coupled face‐centered tetragonal (fct) FePd/α‐Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high‐temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct‐FePd phase was formed by the interdiffusion between reduced α‐Fe and face‐centered cubic (fcc) Pd, whereas the excessive α‐Fe remained around the fct‐FePd grains, realizing exchange coupling between the soft magnetic α‐Fe and hard magnetic fct‐FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange‐coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g?1. This work provides a bottom‐up approach using exchange‐coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties.  相似文献   

18.
Silver oxalate Ag2C2O4, was already proposed for soldering applications, due to the formation when it is decomposed by a heat treatment, of highly sinterable silver nanoparticles. When slowly decomposed at low temperature (125 °C), the oxalate leads however to silver nanoparticles isolated from each other. As soon as these nanoparticles are formed, the magnetic susceptibility at room temperature increases from −3.14 10−7 emu.Oe−1.g−1 (silver oxalate) up to −1.92 10−7 emu.Oe−1.g−1 (metallic silver). At the end of the oxalate decomposition, the conventional diamagnetic behaviour of bulk silver, is observed from room temperature to 80 K. A diamagnetic-paramagnetic transition is however revealed below 80 K leading at 2 K, to silver nanoparticles with a positive magnetic susceptibility. This original behaviour, compared to the one of bulk silver, can be ascribed to the nanometric size of the metallic particles.  相似文献   

19.
In this work we report the size-controlled synthesis of BiFeO3 nanoparticles via a soft-chemistry route. In this route, the aqueous solution of inorganic Bi and Fe salt is gelled by using acrylamide and bisacrylamide. It is demonstrated that the grain size of resulted BiFeO3 powders can be tailored by varying the ratio of acrylamide to bisacrylamide. With increase in the bisacrylamide content, the grain size decreases monotonously. By using this method, a series of BiFeO3 samples with average grain size ranging from 110 to 52 nm have been prepared. The thermal decomposition process of precursor xerogels and the formation of BiFeO3 phase are investigated by means of X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry analysis, and fourier transform infrared spectroscopy (FTIR). SEM observations reveal that the prepared BiFeO3 nanoparticles are nearly spherical in shape with a narrow diameter distribution. Magnetic hysteresis loop measurement shows that the BiFeO3 nanoparticles exhibit weak ferromagnetic behavior at room temperature, and a saturation magnetization of ~1.56 emu/g is achieved for the 52 nm sample.  相似文献   

20.
Nano-magnetic magnesium ferrite particles were synthesized by a simple and cost-effective method using different ratios between Mg/Fe precursors and fuel. Significant effects of these ratios on the crystalline phases, crystallite size, particle size, lattice constant, morphological and magnetic properties of the as-synthesized nano-particles have been investigated. Phase evolution, morphological and magnetic characteristics were determined by XRD, SEM, EDX and VSM techniques. The results obtained revealed that the as-prepared Mg ferrite nano-particles have the nanometer size and partially inverse spinel structure. Nano-structured magnesium ferrite spinel has been synthesized with various cyrystallite sizes ranging from 8 to 66 nm. Room temperature magnetization results showed that the magnetic properties of Mg ferrite nano-particles depend upon their size and crystallinity. The saturation magnetization for the sample having the highest crystallite size was 32.85 emu/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号