首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of inclusivepp→π?+? in terms of the covariant Boltzmann factor (BF) including the chemical potential μ indicates a) that the temperatureT increases less rapidly than expected from Stefan's law, b) that a scaling property holds for the fibreball velocity of π? secondaries, leading to a multiplicity law like ~E cm 1/2 at high energy, and c) that μπ is related to the quark mass: μπ=2m q ?m π the quark massm q determined by \(T_{\pi ^ - } \) at \(\bar pp\) threshold beingm q =3Tπ?330 MeV. Because ofthreshold effects \(T_{\bar p}< T_{\pi ^ - } \) , whereas \({{\mu _p } \mathord{\left/ {\vphantom {{\mu _p } {\mu _{\pi ^ - } }}} \right. \kern-0em} {\mu _{\pi ^ - } }} \simeq {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}\) as expected from the quark contents of \(\bar p\) and π. The antinuclei \(\bar d\) and \({{\bar t} \mathord{\left/ {\vphantom {{\bar t} {\overline {He^3 } }}} \right. \kern-0em} {\overline {He^3 } }}\) observed inpp events are formed by coalescence of \(\bar p\) and \(\bar n\) produced in thepp collision. Semi-empirical formulae are proposed to estimate multiplicities of π?, \(\bar p\) and antinuclei.  相似文献   

2.
The asymmetry parameters \(\alpha _{\beta ^ \mp } \) of the beta-ray emitted from aligned12B and12N are evaluated as a function of the energy. The agreement with experimental differential data is excellent for both \(\alpha _{\beta ^ - } \) (W) and \(\alpha _{\beta ^ + } \) (W). This work confirms, using available nuclear model information, that no induced pseudotensor (IPT) interaction is required for a correct theoretical interpretation of the data. An upper limit for the IPT coupling constantf T is determined from a simultaneous fit of \(\alpha _{\beta ^ - } \) (W) and \(\alpha _{\beta ^ + } \) (W).  相似文献   

3.
Measurements of the spin-spin relaxation time T 2 of the short-lived $\upbeta $ -emitter $^{12}B (I^{\uppi }$ = 1?+?, T 1/2 = 20 ms) in Si have been performed. By applying the spin echo method to $\upbeta $ -NMR measurements, the intrinsic T 2 for 12B in Si was successfully determined with the effect of the static magnetic field inhomogeneity removed. The temperature dependence of T 2 for 12B in Si shows that T 2 becomes longer with increasing temperature, which seems to reflect the effect of motional narrowing.  相似文献   

4.
DIPTIMOY GHOSH 《Pramana》2012,79(4):895-898
A comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b ?? s ?? ?+? ?? ? transition is performed. The effects of new vector?Caxial vector (VA), scalar?Cpseudoscalar (SP) and tensor (T) interactions on the differential branching ratios, forward?Cbackward asymmetries (A FB??s), and direct CP asymmetries of ${\bar B}_{\rm s}^0 \to \mu^+ \mu^-$ , ${\bar B}_{\rm d}^0 \to$ $ X_{\rm s} \mu^+ \mu^-$ , ${\bar B}_{\rm s}^0 \to \mu^+ \mu^- \gamma$ , ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ , and ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ are examined. In ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ , we also explore the longitudinal polarization fraction f L and the angular asymmetries $A_{\rm T}^{(2)}$ and A LT, the direct CP asymmetries in them, as well as the triple-product CP asymmetries $A_{\rm T}^{\rm (im)}$ and $A^{\rm (im)}_{\rm LT}$ . While the new VA operators can significantly enhance most of the observables beyond the Standard Model predictions, the SP and T operators can do this only for A FB in ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ .  相似文献   

5.
The general theory of inhomogeneous mean-field systems of Raggio and Werner provides a variational expression for the (almost sure) limiting free energy density of the Hopfield model $$H_{N,p}^{\{ \xi \} } (S) = - \frac{1}{{2N}}\sum\limits_{i,j = 1}^N {\sum\limits_{\mu = 1}^N {\xi _i^\mu \xi _j^\mu S_i S_j } } $$ for Ising spinsS i andp random patterns ξμ=(ξ 1 μ 2 μ ,...,ξ N μ ) under the assumption that $$\mathop {\lim }\limits_{N \to \gamma } N^{ - 1} \sum\limits_{i = 1}^N {\delta _{\xi _i } = \lambda ,} \xi _i = (\xi _i^1 ,\xi _i^2 ,...,\xi _i^p )$$ exists (almost surely) in the space of probability measures overp copies of {?1, 1}. Including an “external field” term ?ξ μ p hμμξ i=1 N ξ i μ Si, we give a number of general properties of the free-energy density and compute it for (a)p=2 in general and (b)p arbitrary when λ is uniform and at most the two componentsh μ1 andh μ2 are nonzero, obtaining the (almost sure) formula $$f(\beta ,h) = \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } + h^{\mu _2 } ) + \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } - h^{\mu _2 } )$$ for the free energy, wheref cw denotes the limiting free energy density of the Curie-Weiss model with unit interaction constant. In both cases, we obtain explicit formulas for the limiting (almost sure) values of the so-called overlap parameters $$m_N^\mu (\beta ,h) = N^{ - 1} \sum\limits_{i = 1}^N {\xi _i^\mu \left\langle {S_i } \right\rangle } $$ in terms of the Curie-Weiss magnetizations. For the general i.i.d. case with Prob {ξ i μ =±1}=(1/2)±?, we obtain the lower bound 1+4?2(p?1) for the temperatureT c separating the trivial free regime where the overlap vector is zero from the nontrivial regime where it is nonzero. This lower bound is exact forp=2, or ε=0, or ε=±1/2. Forp=2 we identify an intermediate temperature region between T*=1?4?2 and Tc=1+4?2 where the overlap vector is homogeneous (i.e., all its components are equal) and nonzero.T * marks the transition to the nonhomogeneous regime where the components of the overlap vector are distinct. We conjecture that the homogeneous nonzero regime exists forp≥3 and that T*=max{1?4?2(p?1),0}.  相似文献   

6.
The rapidity distributions of inclusive \(e^ + e^ - \to h\bar h + \cdot \cdot \cdot\) of PEP and DESY experiments are analyzed in terms of the covariant partition temperatureT p model. The estimates ofT p * in the fireball system are comparable to the conventional temperature, the energy dependence follows approximately Stefan's law, the radius of the specific volume ralative to the energy density being ~1.18 fm. In the c.m.s. of collision, \(T_p = AW^a (W = \sqrt s in GeV)\) witha=0.60±0.05 andA=0.256±0.006, it is found \(T_p \cong {W \mathord{\left/ {\vphantom {W {\tfrac{3}{2}\left\langle {n_ \pm } \right\rangle }}} \right. \kern-0em} {\tfrac{3}{2}\left\langle {n_ \pm } \right\rangle }}\) . These properties hold also for \(\bar pp\) collision, but not forpp→π?+...  相似文献   

7.
Let O be a closed Poisson conjugacy class of the complex algebraic Poisson group GL(n) relative to the Drinfeld-Jimbo factorizable classical r-matrix. Denote by T the maximal torus of diagonal matrices in GL(n). With every ${a \in O \cap T}$ we associate a highest weight module M a over the quantum group ${U_q \bigl(\mathfrak{g} \mathfrak{l}(n)\bigr)}$ and an equivariant quantization ${\mathbb{C}_{\hbar,a}[O]}$ of the polynomial ring ${\mathbb{C}[O]}$ realized by operators on M a . All quantizations ${\mathbb{C}_{\hbar,a}[O]}$ are isomorphic and can be regarded as different exact representations of the same algebra, ${\mathbb{C}_{\hbar}[O]}$ . Similar results are obtained for semisimple adjoint orbits in ${\mathfrak{g} \mathfrak{l}(n)}$ equipped with the canonical GL(n)-invariant Poisson structure.  相似文献   

8.
In this paper the four-dimensional (4-D) space-velocity Cosmological General Relativity of Carmeli is developed by a general solution of the Einstein field equations. The Tolman metric is applied in the form 1 $$ ds^2 = g_{\mu \nu} dx^{\mu} dx^{\nu} = \tau^2 dv^2 -e^{\mu} dr^2 - R^2 \left(d{\theta}^2 + \mbox{sin}^2{\theta} d{\phi}^2 \right), $$ where g μν is the metric tensor. We use comoving coordinates x α = (x 0, x 1, x 2, x 3) = (τv, r, θ, ?), where τ is the Hubble-Carmeli time constant, v is the universe expansion velocity and r, θ and ? are the spatial coordinates. We assume that μ and R are each functions of the coordinates τv and r. The vacuum mass density ρ Λ is defined in terms of a cosmological constant Λ, 2 $$ \rho_{\Lambda} \equiv -\frac{ \Lambda } { \kappa \tau^2 }, $$ where the Carmeli gravitational coupling constant κ = 8πG/c 2 τ 2, where c is the speed of light in vacuum. This allows the definitions of the effective mass density 3 $$ \rho_{eff} \equiv \rho + \rho_{\Lambda} $$ and effective pressure 4 $$ p_{eff} \equiv p - c \tau \rho_{\Lambda}, $$ where ρ is the mass density and p is the pressure. Then the energy-momentum tensor 5 $$ T_{\mu \nu} = \tau^2 \left[ \left(\rho_{eff} + \frac{p_{eff}} {c \tau} \right) u_{\mu} u_{\nu} - \frac{p_{eff}} {c \tau} g_{\mu \nu} \right], $$ where u μ = (1,0,0,0) is the 4-velocity. The Einstein field equations are taken in the form 6 $$ R_{\mu \nu} = \kappa \left(T_{\mu \nu} - \frac{1} {2} g_{\mu \nu} T \right), $$ where R μν is the Ricci tensor, κ = 8πG/c 2 τ 2 is Carmeli’s gravitation constant, where G is Newton’s constant and the trace T = g αβ T αβ . By solving the field equations (6) a space-velocity cosmology is obtained analogous to the Friedmann-Lemaître-Robertson-Walker space-time cosmology. We choose an equation of state such that 7 $$ p = w_e c \tau \rho, $$ with an evolving state parameter 8 $$ w_e \left(R_v \right) = w_0 + \left(1 - R_v \right) w_a, $$ where R v = R v (v) is the scale factor and w 0 and w a are constants. Carmeli’s 4-D space-velocity cosmology is derived as a special case.  相似文献   

9.
Let (?, τ, ω) denote aW*-algebra ?, a semigroupt>0?τ t of linear maps of ? into ?, and a faithful τ-invariant normal state ω over ?. We assume that τ is strongly positive in the sense that $$\tau _t (A^ * A) \geqq \tau _t (A)^ * \tau _t (A)$$ for allA∈? andt>0. Therefore one can define a contraction semigroupT on ?= \(\overline {\mathcal{M}\Omega } \) by $$T_t A\Omega = \tau _t (A)\Omega ,{\rm A} \in \mathcal{M},$$ where Ω is the cyclic and separating vector associated with ω. We prove 1. the fixed points ?(τ) of τ are given by ?(τ)=?∩T′=?∩E′, whereE is the orthogonal projection onto the subspace ofT-invariant vectors, 2. the state ω has a unique decomposition into τ-ergodic states if, and only if, ?(τ) or {?υE}′ is abelian or, equivalently, if (?, τ, ω) is ?-abelian, 3. the state ω is τ-ergodic if, and only if, ?υE is irreducible or if $$\mathop {\inf }\limits_{\omega '' \in Co\omega 'o\tau } \left\| {\omega '' - \omega '} \right\| = 0$$ for all normal states ω′ where Coω′°τ denotes the convex hull of {ω′°τ t } t>0. Subsequently we assume that τ is 2-positive,T is normal, andT* t ?+Ω \( \subseteqq \overline {\mathcal{M}_ + \Omega } \) , and then prove 4. there exists a strongly positive semigroup |τ| which commutes with τ and is determined by $$\left| \tau \right|_t \left( A \right)\Omega = \left| {T_t } \right|A\Omega ,$$ 5. results similar to 1 and 2 apply to |τ| but the τ-invariant state ω is |τ|-ergodic if, and only if, $$\mathop {\lim }\limits_{t \to \infty } \left\| {\omega 'o\tau _t - \omega } \right\| = 0$$ for all normal states ω′.  相似文献   

10.
Mössbauer measurements on Fe0.068Ni0.932Cl2 were done at temperatures between 55K and 4.2K. We have found that below TN-50K an observed spectrum is composed of two kinds of spectra and that the composition ratio changes gradually with temperature. The average angle of Fe2+ spins, \(\overline {\theta _{Fe} } \) , with the c-axis is smaller than \(\overline {\theta _c } \) by ?15° at each temperature below TN, where \(\overline {\theta _c } \) is the average angle of total spins with the c-axis in this system obtained from the neutron scattering measurements. This is reasonably understood if we take into account that Fe2+ spins have the strong uniaxial anisotropy along the c-axis. We discuss the coexistence of the two kinds of spectra by considering the exchange energy of Fe2+ spins and the local magnetic anisotropy.  相似文献   

11.
12.
The method of x-ray spectral line displacement is used for studying the electronic structure, i.e., the population of the 4f shell of Yb, 5s shells of In and Ag, and 4s shell of Cu, in the YbIn1?x AgxCu4 heavy-fermion system (0≤x≤1, T=300 K; T=77, 300, and 1000 K for YbIn0.7Ag0.3Cu4). It is shown that Yb is in a state with fractional valence whose value is independent of x (or on the type of the partner, i.e., In and Ag) in the entire range of compositions and is equal to $\bar m = 2.91 \pm 0.01$ at T=300 K. An increase in the population of the In s states of In, Ag, and Cu (as compared to metals) is observed: $\overline {\Delta n_s } (In) = 0.65 \pm 0.05 el/at$ , $\overline {\Delta n_s } (Ag) = 0.71 \pm 0.09 el/at$ , and $\overline {\Delta n_s } (Cu) = 0.08 \pm 0.02 el/at$ . A practically linear decrease in the valence of Yb to the value m(T=1000 K)=2.81±0.02 is observed in YbIn0.7Ag0.3Cu4 upon an increase in temperature from T=77 to 1000 K.  相似文献   

13.
The abundances of FeII and FeIII environments within green rusts one, GR1s, that intercalate carbonate, oxalate and methanoate (formate) anions are found from Mössbauer spectra for compositions corresponding to [Fe $^{\rm II}_{6}$ Fe $^{\rm III}_{2}$ (OH)16]2?+??[CO $_{3}^{2-}$ ?5H2O]2???, [Fe $^{\rm II}_{4}$ Fe $^{\rm III}_{2}$ (OH)12]2?+??[CO $_{3}^{2-}$ ?3H2O]2???, [Fe $^{\rm II}_{6}$ Fe $^{\rm III}_{2}$ (OH)16]2?+??[C2O $_{4}^{2-}$ ?4H2O]2??? and [Fe $^{\rm II}_{5}$ Fe $^{\rm III}_{2}$ (OH)14]2?+??[2HCOO????3H2O]2???. These formulae correspond to orders α, β and γ where cation distances are (2 × a 0), ( $\surd 3$ × a 0) or a mixture of both leading to (7 × a 0), where ratio x = {[FeIII]/[Fetotal]} = 1/4, 1/3 and 2/7, respectively. Anion distributions within interlayers are also devised and long-range orders determined accordingly.  相似文献   

14.
In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem: $$v \cdot \nabla _{x}F =\frac{1}{{\rm K}_{\rm n}}Q(F,F),\qquad (x,v)\in \Omega \times \mathbf{R}^{3}, \quad \quad (0.1) $$ v · ? x F = 1 K n Q ( F , F ) , ( x , v ) ∈ Ω × R 3 , ( 0.1 ) $$F(x,v)|_{n(x)\cdot v<0} = \mu _{\theta}\int_{n(x) \cdot v^{\prime}>0}F(x,v^{\prime})(n(x)\cdot v^{\prime})dv^{\prime},\quad x \in\partial \Omega,\quad \quad (0.2) $$ F ( x , v ) | n ( x ) · v < 0 = μ θ ∫ n ( x ) · v ′ > 0 F ( x , v ′ ) ( n ( x ) · v ′ ) d v ′ , x ∈ ? Ω , ( 0.2 ) where Ω is a bounded domain in ${\mathbf{R}^{d}, 1 \leq d \leq 3}$ R d , 1 ≤ d ≤ 3 , Kn is the Knudsen number and ${\mu _{\theta}=\frac{1}{2\pi \theta ^{2}(x)} {\rm exp} [-\frac{|v|^{2}}{2\theta (x)}]}$ μ θ = 1 2 π θ 2 ( x ) exp [ - | v | 2 2 θ ( x ) ] is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for ${|\theta -\theta_{0}|\leq \delta \ll 1}$ | θ - θ 0 | ≤ δ ? 1 and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion ${F_s=\mu_{\theta_0}+\delta F_{1}+O(\delta ^{2})}$ F s = μ θ 0 + δ F 1 + O ( δ 2 ) and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.  相似文献   

15.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

16.
17.
Using the formfactors which are entire analytic functions in a momentum space, nonlocality is introduced for a wide class of interaction Lagrangians in the quantum theory of one-component scalar field φ(x). We point out a regularization procedure which possesses the following features:
  1. The regularizedS δ matrix is defined and there exists the limit $$\mathop {\lim }\limits_{\delta \to 0} S^\delta = S.$$
  2. The Green positive-frequency functions which determine the operation of multiplication in \(S \cdot S^ + \mathop = \limits_{Df} S \circledast S^ + \) can be also regularized ?δ and there exists the limit $$\mathop {\lim }\limits_{\delta \to 0} \circledast ^\delta = \circledast \equiv .$$
  3. The operator \(J(\delta _1 ,\delta _2 ,\delta _3 ) = S^{\delta _1 } \circledast ^{\delta _2 } S^{\delta _3 + } \) is continuous at the point δ123=0.
  4. $$S^\delta \circledast ^\delta S^{\delta + } \equiv 1at\delta > 0.$$ Consequently, theS-matrix is unitary, i.e. $$S \circledast S^ + = S \cdot S^ + = 1.$$
  相似文献   

18.
We consider an anisotropic bond percolation model on $\mathbb{Z}^{2}$ , with p=(p h ,p v )∈[0,1]2, p v >p h , and declare each horizontal (respectively vertical) edge of $\mathbb{Z}^{2}$ to be open with probability p h (respectively p v ), and otherwise closed, independently of all other edges. Let $x=(x_{1},x_{2}) \in\mathbb{Z}^{2}$ with 0<x 1<x 2, and $x'=(x_{2},x_{1})\in\mathbb{Z}^{2}$ . It is natural to ask how the two point connectivity function $\mathbb{P}_{\mathbf{p}}(\{0\leftrightarrow x\})$ behaves, and whether anisotropy in percolation probabilities implies the strict inequality $\mathbb{P}_{\mathbf{p}}(\{0\leftrightarrow x\})>\mathbb{P}_{\mathbf {p}}(\{0\leftrightarrow x'\})$ . In this note we give an affirmative answer in the highly supercritical regime.  相似文献   

19.
Daisuke Jido 《Few-Body Systems》2013,54(7-10):939-945
Hadronic composite states are introduced as few-body systems in hadron physics. The Λ(1405) resonance is a good example of the hadronic few-body systems. It has turned out that Λ(1405) can be described by hadronic dynamics in a modern technology, which incorporates coupled channel unitarity framework and chiral dynamics. The idea of the hadronic ${\bar KN}$ composite state of Λ(1405) is extended to kaonic few-body states. It is concluded that, due to the fact that K and N have similar interaction nature in s-wave ${\bar K}$ couplings, there are few-body quasibound states with kaons systematically just below the break-up thresholds, like ${\bar KNN, \,\bar KKN}$ and ${\bar KKK}$ , as well as Λ(1405) as a ${\bar KN}$ quasibound state and f 0(980) and a 0(980) as ${\bar KK}$ .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号