首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The basic product synthesized byTraube andSchwarz from mesityl oxide and guanidine has not been 4.4.6-trimethyl-4.5-dihydro-2-pyrimidinamine (1), but a mixture containing the 4.4.6-trimethyl-3.4-dihydro-2(1H)-pyrimidinimine (resp. an isomeric pyrimidinamine)2 a (resp.2 b, 2 c) and the dimeric 4.4′-methylenedi[2(1H)-pyrimidinimine] (resp. an isomeric methylenedipyrimidinamine)3 a (resp.3 b, 2 c) and the dimerisation reaction were studied in a series of experiments. The product of the reaction of guanidine and phorone is not the guanidinopropylpyrimidine8 4, but the 4.4′-spirobi[2(1H)-pyrimidinimine] (resp. a spirobipyrimidinamine)11 a (resp.11 b, 11 c). No determination was possible on the basis of NMR whether the condensation products of guanidine—in solutions ofDMSO-d6—are pyrimidinimines (2 a, 3 a, 11 a) or pyrimidinamines (2 b resp.2 c, 3 b resp.3 c, 11 b resp.11 c) or mixtures of the isomeric compounds. The NMR-and mass spectra of2 a (resp.2 b, 2 c),3 a (resp.3 b, 3 c),11 a (resp.11 b, 11 c) and their derivates are discussed.  相似文献   

2.
Bromination of 1-benzyl-4-methyl-3.4-dihydro-2(1H)-pyrimidinone (9 a) with 1 mole Br2 in CHCl3 yields 1-benzyl-5-bromo-6-hydroxy-4-methyltetrahydro-2(1H)-pyrimidinone,12 a, or the 6-ethoxypyrimidinone13 a, according to whether H2O orEtOH is used in working up. With 2 moles Br2,9 a analogously affords the 5.5-dibromopyrimidinnes14 a or15 a. Bromination of the 6-hydroxypyrimidinone10 a yields the same products,12 a and13 a, or14 a and15 a respectively, while the 4-phenyl-pyrimidinones9 b and11 b yield the corresponding 5-bromo-and 5.5-dibromopyrimidinones13 b and15 b. The structures of the compounds12 a-15 b are confirmed by their NMR data and chemical properties: the oxopyrimidinylmethylureas16 a and17 a are formed by the action of methylurea on12 a and13 a, or on14 a and15 a respectively; with hexamethylenetetramine,12 a reacts to give the 5.6-dihydroxypyrimidinone18 a, while13 b is transformed to the 4-phenylpyrimidinone19 b. 13 b was also synthesized from α-bromocinnamaldehyde. The mechanism of bromination is discussed.  相似文献   

3.
The betaines1b–d were prepared4 by systematic variation of the alkyl groups and were reacted with trifluoroacetic acid anhydride (TFA) to give the diacyl-ylides2b,c. The betain1d andTFA afford the trifluoroacetate3d 5. The salts3b,c, which result from hydrolysis of2b,c as well as3d (X=I) can be transformed in 75 to 83% yield into the monoacyl-ylides4b–d with the help of silver oxide. Aqueous solutions of4a–d exhibit alkalinepH, which points to the formation of the corresponding ammonium bases. In the case of4b,c the bases5b,c could be isolated. It can be shown, that4b,c and5b,c, respectively, undergo a reversible addition or elimination of one mole wather with great ease.  相似文献   

4.
4-Hydrazino-2.5-di-tert.-Butyl-2-methyl-2H-imidazole (1) reacts with aldehydes and ketones to give condensation products (2 a-1). The reaction of1 with acyl chlorides and dicarboxylic acid chlorides gives rise to the corresponding 4-acylhydrazino-2H-imidazoles (3 a, b) and dicarboxylic-bis(imidazole-4-yl)-hydrazides (4 a-c) resp. Heating1 with acetyl bromide, ethyl orthoformate and 3-bromo-4-methyl-2-pentanone affords new condensedring systems5 a, b and7, resp.  相似文献   

5.
Oxidation of the α- and β-4-phenyl-1,2,4-triazolin-3,5-dione adducts of vitamin D3 (2 and1) withMCPBA yields two diastereomeric mixtures of the (5,10)-(7,8)-dioxiranes3 a,3 b,3 c and4 a,4 b respectively. The corresponding benzoates5 a,5 b,6 a and6 b were prepared and the X-ray crystal structure of5 b was determined. This analysis proved5 b to be the (5R, 1 OS)-(7R, 8R)-dioxirane of the β-resp. (6S)-4-phenyl-1,2,4-triazolin-3,5-dione adduct1 of vitamin D3.  相似文献   

6.
The 4-pyrazoline-3-one1 reacts with 4-dimethylaminobenzaldehyde to yield the stable asymmetric cyanine dye2b which reacts with1 to give the colorless (aryl) (dipyrazolyl) methane3b. Using aldehydes with less cationstabilizing groups the polymethines2 are not isolated but only the methanes3. The structures of2b and3 are discussed by1 H,13C and Hetero NMR spectra.  相似文献   

7.
Guanidine reacts with chalkone1 a, 4-methylchalkone1 b and 4′-methylchalkone1 c resp. to yield mixtures of pyrimidinamines2 a,3 b and3 c (=3 b) resp. with (2:1)-condensatesA,B andC resp. The structures of the compoundsA-C (whicha priori could be dihydropyrimidopyrimidines4 a-c or5 a-c or6 a-c) are elucidated. NMR-investigations show that the saltsA-C · HCl must be symmetrically substituted pyrimidopyrimidinyliumchlorides4 a-c · HCl or5 a-c · HCl (and not6 a-c · HCl). Furthermore, it is proved by chemical methods that the condensatesB · HCl andC · HCl are pyrimidopyrimidinyliumchlorides4 b andc · HCl (and not5 b andc · HCl): The structure ofB · HCl (=4 b · HCl) was established by total synthesis of dimethylpyrimidopyrimidinyliumpicrate9 b-Pi from10 c (via13 c · HI-18 · HCl) and transformation ofB · HCl into an identical salt9 b-Pi via hexahydropyrimidopyrimidine8 b · HCl. The structure ofC · HCl (=4 c · HCl) was determined by comparison of its hydrogenation product (=8c · HCl) with8 b · HCl. The structure of condensateA · HCl (=4 a · HCl) results from conclusion by analogy. The spatial structure of4 a-c · HCl and8 a-c · HCl is discussed; it was established by NMR that the salts are racemic mixtures of stereoisomers4 a-c K · HCl and8 a-c K · HCl resp. and their antipodes (with C2 symmetry).  相似文献   

8.
Reduction (both catalytically and with complex hydrides) of the diphenyl diketones1 (a, b, c andd withn=0, 2, 3 and 4) was investigated mainly with regard to the diastereomeric ratio of the diols2. For2 a and2 b exact results were obtained by NMR spectroscopy (without or with shift reagents) of the diol mixture (2 a) or after stereoselective cyclization to the cyclic ethers (3 b). AlsoGC andLLC were employed for the analysis of2 a (GC of the trimethylsilyl derivatives) and for the ethers3, resp. (GC for3 a and3 d;LLC for3 b and3 c). The reduction of1 a, 1 b (and in part1 c) proceeds with high stereoselectivity; themeso-diol preponderates in the case of2 a, therac.-diol for2 b and2 c; with increasingn the diastereomeric ratio approaches the statistical ratio of 1∶1. Preparations of the stereoisomeric diols (2 b, c andd via acetylenic precursors) and of the cyclic diphenyl ethers (by stereoselective cyclization and/or chromatographic separation;3 c and3 d for the first time) as well as the determination of their configurations are described. The latter was achieved by NMR and for the ethers3 also by hydrogenation of the corresponding heteroaromatics.  相似文献   

9.
The reaction of 2-picolylketones (1 a, b) with reactive trichlorophenyl malonates (2 a–f) leads to 1-acyl-2-hydroxy-4-quinoliziones (3 a–i) which can be easily deacylated by boiling hydrochloric acid yielding 4-quinolizinones4 a–f. The 3-acetyl-2-hydroxy-4-quinolizinones6 and8 are obtained byKlosa-Ziegler acylation of4 a and7, respectively. The reaction of the acetyl compound3 a with acetic anhydride yields the 2-pyrone derivative9, whereas the propionyl derivative3 g yields the 4-pyrone10 under the same conditions. Nitration of3 e does not give the 1-nitro derivative12 but rather the 1,3-dinitro compound11.  相似文献   

10.
Thed,l-(1a) andmeso-forms (1b) of α,α'-dihydroxy-α,α'-dimethyladipic acid, dilactone (3), diiminodilactone (4), and lactonolactam (5) were obtained by the reaction of acetonylacetone with KCN and HCl. The transformations of1 to the esters2, dilactone3 to la, and diiminodilactone4 to dilactone3 were studied. It was shown that3 can be readily obtained from la by thermolysis, acid catalysis, and DCC action as well as by acid catalyzed cyclization of2a, while dilactone3 can be obtained from1b and2b in negligible yield only under drastic conditions, obviously, due to the partial epimirization of themeso-forms. The mild thermolysis of1b leads totrans-lactonoacid (6), from which the ester7 has been obtained. The effective acid catalyzed cyclization of amides8 and9 to3, lactamoamide12 to5, and amide14 to model lactone13 was found. The NMR spectra of the products were studied, and a1H NMR test was suggested for identification ofd,l- andmeso-forms1 and2. The stereochemistry of monolactones6, 7, 9, 10a, 10b, 11, and dilactone3 was established. The differences in the chemical behavior of α,α'-dihydroxyglutaric and adipic acids were explained by the significant reduction of the non-bonded interactions of the substituents in the corresponding monolactones during the transfer from 1,3- to 1,4-substituted systems.  相似文献   

11.
Guanidine reacts with cyclohexanone, cycloheptanone, acetone and 3-pentanone, resp., in a molar ratio 2∶1 to give the 1,3,5-triazaspiro[5.5]undeca-and [5.6]dodeca-1,3-dien-2,4-diamines3 a and3 b resp. and the 6,6-dimethylresp. diethyl-1,6-dihydro-1,3,5-triazin-2,4-diamines3 d and3 e resp. On the contrary, action of guanidine on cyclopentanone yields not3 c, but the 1′,5′,7′-tetrahydrospiro[cyclopentane-1,4′-cyclopentapyrimidine]-2′(3′H)-imines2 c, 5 c and6 c resp., which are 1∶2- and 1∶3-condensates. Phenylacetone is transformed by guanidine (1∶2) to give 6-phenyl-2,4-pyrimidindiamine (8 f). The structure of the compounds cited is proved by NMR-, IR-, and (partially) mass spectra. The different courses of the formation of3 a, b, d, e, 2 c, 5 c and6 c resp. and8 f are also discussed. The structural formulae of some additional bases, which were synthesized from guanidine and cyclopentanone, 3-pentanone and phenylacetone resp. could not be established.  相似文献   

12.
Crotonaldehyde resp. cinnamaldehyde react with guanidiniumchloride to give 2-amino-6-guanidinio-4-methyl-3.4.5.6-tetrahydro-1H-pyrimidiniumdichloride (4 a) resp. 6-hydroxy-4-phenylpyrimidiniumchloride3 b and the 4.6-dihydroxy-2.8-dimethyl (resp. 2.8-diphenyl)octahydropyrimido[1.2?a]pyrimidiniumchlorides6 a and6 b, resp. Action of 2.4-(or 2.6-)xylenol on4 a resp.3 b yields 2-amino-6-[2(or 4)-hydroxy-3.5-dimethylphenyl]-4-methyl-(resp. 4-phenyl)-3.4.5.6-tetrahydro-1H-pyrimidiniumchlorides (8 a resp.8 b or9 a resp.9 b), which are transformed to the zwitterionic compounds10 a–11 b by aqu. NaOH.6 a reacts with 2.4-xylenol to give the triazaoxabenzanthraceniumchlorid12 a·HCl (prove for the structure given for6 a). The chemical properties and the NMR-, UV-, mass- and IR-spectra of the compounds are discussed.  相似文献   

13.
The 2-cyclohexenones1 a, b andc react with NH4SCN to give 3,5,5-trimethyl-, 3-methyl-5-phenyl- and 3-methyl-2-cyclohexeniminiumthiocyanates8 a, b andc resp. (i.e. salts of α,β-unsaturated imines) and not the expected diazabicyclononane-thiones5 a, b andc. Alternative formulae for the1—NH4SCN-condensates are discussed and rejected on the basis of IR- and NMR-spectra and the chemical properties of5 a-c. By action of thiourea inMeOH/NaOMe the 2-cyclohexenones1a, d ande are transformed into 1-hydroxy-5,7,7-trimethyl-, 1-hydroxy-5-methyl- and 1-hydroxy-2,4-diazabicyclo[3.3.1]nonane-3-thiones5 a, d ande resp. The structure of the diazabicyclononane-thiones5 a, d ande is established by means of NMR-, IR- and MS-spectra. 8 a-c and5 e showed no significant herbicidal and only small fungicidal (8 b, c) and insecticidal (8 a-c) activities in screening tests.  相似文献   

14.
Diarylpentadienones (1) react with phenylacetonitriles (2) to give 4-oxo-1.2.6-triaryl-cyclohexane-1-nitrils (4). Isomer compounds (6) may be obtained byMichael addition of2 to esters of cinnamic acids and cyclisation to5, followed by hydrolysis and decarboxylation. The steric behaviour of4 and6 is established by1H- and13C-NMR-spectroscopy and by the different mode of reaction and products in the condensation of4 and6 with aromatic aldehydes to give8 or9.  相似文献   

15.
By heating with ammonia or aniline 1-acyl-2-hydroxy-4-quinolizinones (1 a–e) are transformed to 4-hydroxy-5-(2-pyridyl)-2-pyridones (3 a–f), with4 a–d as minor sideproducts. The structure of the rearranged compound3 f was established by an independent synthesis starting with6 and7. The reaction of1 a, d with ethyl β-aminocrotonate (β-ACE) yields pyrono-quinolizinones8 a, b and pyronopyridones9 a, b as byproducts; the latter are obtained in high yield by reaction of3 a, b with β-ACE. The ringtransformation reaction cannot be extended to 1-methoxycarbonyl-quinolizinones, such as10; in this case 2-amino-4-quinolizinone11 is the main product of the reaction with ammonia.  相似文献   

16.
Hydrolysis of the 4-alkyliminothiopyrano[2,3-b]pyridinedioles (5) and 4-alkylaminothiopyrano[2,3-b]pyridones (6) resp. with 10% NaOH gives 5,7-dihydroxy-2H-thiopyrano[2,3-b]pyridine-4(3H)-one (7).7 can be obtained in better yield by reaction of 4-dimethylamino-2(1H)-pyridinethione (8) with bistrichlorphenylethylamlonate (2). Aminolysis of7 affords the two isomeric products5 and6. On treatment with hydrazines,7 reacts only to 4-hydrazonoderivatives5. By heating in bromobenzene5d is cyclisized to 1H-5,1,2,6-thiatriaza-acenaphthylen-7-ol (11). On methylation with methyljodide5,6 and7 furnish the 7-methoxyproducts13,14 and12. By heating in 20% NaOH7 is transformed into the 2-thioxo-3-pyridylmethylketone16 A and its tautomer, 2-mercapto-3-pyridylmethylketone16 B. The structures of5,6 and7 are discussed.  相似文献   

17.
1.2.4.5-Tetrahydro-3.2.4-benzothiadiazepine-3.3-dioxide (3a) (1 a) was prepared both by treating o-xylylene dibromide with sulfamide and by reaction of o-xylylene diamine (1 c) with SO2Cl2 or sulfamide. 4-Chloro-o-xylylene-diamine (2 c) and 1.2-bis(β-aminoethyl)benzene (8), resp., yield 7-chloro-1.2.4.5-tetrahydro-3.2.4-benzothiadiazepine-3.3-dioxide (4 a) and 1.2.3.5.6.7-hexahydro-4.3.5-benzothiadiazonine-4.4-dioxide (9), resp., on treatment with sulfamide. 3 a, 4 a, and9 yield the corresponding N,N′-dialkyl derivatives on treatment of their Na-salts with alkyl halides. Several dialkyl derivatives of3 a were prepared also by reaction of1 a with N,N′-dialkyl sulfamides.  相似文献   

18.
Methyl-, benzyl- and phenylguanidine (2 b–d) react with 1-phenyl-1,3-butanedione to yield exclusively N2-substituted 4-methyl-6-phenyl-2-pyrimidinamines10 b–d. The formation of isomeric N1-substituted 2(1H)-pyrimidinimines11 or12 cannot be observed. The structural formulae of10 b and c were proved by spectroscopical methods. The structure of the phenylguanidine-phenylbutanedione-condensate was determined by comparison and establishment of the identity of its picrate with an authentical sample of10 d-picrate, which had been synthetized from pyrimidinthione13 (via methylthiopyrimidine16 · HI). Boiling13 with aniline in butanol yields thiodipyrimidine15 (and not10 d).  相似文献   

19.
4,12- and 4,14-Dibromo-[2.2]metacyclophane (1 and2) were prepared by coupling of 1-bromo-2,4-bis(bromomethyl)-benzene with phenyllithium (isomeric ratio 1∶1). Lithiation of the bromides and subsequent carboxylation afforded the isomeric carboxylic acids3 and4. 4,12-Dimethyl-[2.2]metacyclophane (13) is also accessible with 90% stereoisomeric purity by reaction of 2,4-bis-(chloromethyl)toluene (20) with the Li-salt of 4-methyl-isophthalaldehyde bis(propylene thioacetal) (24) and subsequent desulphurization with Raney-Ni. In this context it was found that bromination of 1,2,4-trimethylbenzene affords 2,5- andnot (as stated in the literature) 2,4-bis(bromomethyl)toluene. The separation of isomers can be accomplished on a preparative scale by column chromatography and for analytical purposes by high pressure liquid and/or gas chromatography. Structural assignments are based on the different symmetries of 4,12- and 4,14-disubstituted [2.2]metacyclophanes belonging to point groupsS 2 andC 2, resp., which account for the different types of spin systems of the bridge protons in the1H-NMR-spectra.  相似文献   

20.
The first order rate constants for the tautomerization of the hydrio(alkynyl) clusters Ru3Pt(μ-H){μ42-C ≡ C1Bu}(CO)9(L2);1a: L2 = dppe,1b; L2 = dppet,1c; L2 = dppp and1d; L2 =S,S-dppb to the corresponding vinylidene clusters Ru3Pt{μ42-C = C(H)tBu}(CO)9(L2)2 have been measured, and they follow the orser1d <1a <1b1c. The reactions involving1a and1d exhibit an inverse kinetic deuterium isotope effect. The structures of1b, 2b, 2c, and2d were determined by X-ray crystallography, and are compared with those of1a and2a which have been previously reported. Crystal data for1b, space groupPbca,a = 13.338(4) Å,b = 17.771(6) Å,c = 36.092(8) Å,Z = 8,R(R w) = 0.059(0.058) for 2342 absorption corrected, observed data; for2b, space group P21/n,a = 10.566(2) Å,b = 20.234(5) Å,c = 20.270(3) Å,β = 96.11(1)°,Z = 4,R(R w) = 0.043(0.053) for 5865 absorption corrected, observed data; for2c, space group P21/n,a = 14.211(5) Å,b = 19.534(2) Å,c = 15.870(2) Å,β = 100.81(2)°,Z = 4,R(R w) = 0.055(0.031) for 6566 absorption corrected, observed data: for2d, space group P212121,a = 12.309(4) Å,b = 19.047(6) Å,c = 19.206(4) Å,Z = 4,R(R w) = 0.055(0.053) fpr 2151 absorption corrected, observed data. The fluxional behavior of1d and1e (which consists of two interconverting isomers) has been examined by variable temperature13C NMR spectroscopy and by31P EXSY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号