首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We construct a dimethylsulfoxide(DMSO)-based photonic crystal fiber(PCF) temperature sensor with enhanced sensitivity.A solid-core PCF with large mode area is employed to supply the in-line Mach– Zehnder interference between the fundamental and cladding modes.Thus,temperature sensing can be realized because of the shift of interference spectrum at different temperatures.The DMSO solvent is infiltrated between the main sensor and a silica tube to increase the temperature sensitivity of the sensor.The obtained sensitivity(0.315 nm/ffC) is one or two orders of magnitude higher than that of previously published results.The proposed sensor is adapted for high-temperature sensing.  相似文献   

3.
Tian Z  Yam SS  Loock HP 《Optics letters》2008,33(10):1105-1107
A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.  相似文献   

4.
A micro Fabry-Perot interferometer(M-FPI) is constructed by splicing a short section of polarizationmaintaining photonic crystal fiber(PM-PCF) to an end-cleaved single-mode fiber with controllable offset. Due to the high effective optical path difference induced by the solid core of the PCF,the M-FPI has an ultrasmall cavity of approximately 110μm.The temperature sensitivity within a range from 33℃to approximately 600℃is measured to be 13.8 pm/℃,which shows good agreement with the theoretical result.This proposed sensor has the advantages of ultracompact size and high stability.Therefore,it is suitable for various space-limited sensing applications in harsh environments.  相似文献   

5.
A theoretical model for surface plasmon resonance (SPR) based tapered fiber optic sensor is proposed with three different taper profiles, namely, linear, parabolic, and exponential-linear. The effect of taper ratio and taper profiles on the sensor’s performance is studied in detail and the design considerations for significantly enhanced sensitivity are reported. The study shows that the exponential-linear taper profile with high taper ratio provides the best performance. The physical reasons behind sensitivity enhancement due to taper ratio and taper profile are given, wherever required.  相似文献   

6.
A novel in-fiber modal interferometer is presented that is based on a nonadiabatic biconical fused taper that couples light between the cladding and the core, combined with the Fresnel reflection at the fiber end. It is observed that the returned light from this fiber structure shows a channeled spectrum similar to that of a two-wave Michelson interferometer. The application of this device as a fiber optic flowmeter sensor is demonstrated.  相似文献   

7.
A sensing structure consisting of an abrupt taper spliced uniformly in to a fiber Bragg grating (FBG) is proposed and experimentally demonstrates refractive index (RI) and temperature measurements. Cladding modes are generated in the fiber through the abrupt taper containing the FBG. Most modes are reflected by the FBG at shorter wavelengths and reenter the launch fiber after passing through the abrupt taper. Spectral integrals are used to measure the power generated by the cladding and core modes. A sensitivity of-83.97 nW/RIU for ambient RI and a temperature sensitivity of 10 pm/℃ are obtained. No cross- sensitivity problems exist between ambient RI and temperature measurement.  相似文献   

8.
A new concept to measure rotation angles based on a fiber-optic modal Mach-Zehnder interferometer is demonstrated by using a nonadiabatic taper cascaded with a long-period fiber grating. Information about the magnitude of the rotation angle can be obtained from the measurement of the interference pattern visibility, and under certain conditions it is also possible to obtain the sign of the rotation angle from the induced phase variation in the fiber interferometer.  相似文献   

9.
A novel Pockels effect based optical voltage sensor (OVS) consisting of quasi-reciprocal reflective optical circuit is proposed and demonstrated in this paper. The quasi-reciprocal reflective optical circuit is realized so that a digital closed-loop detection technique adopted from fiber gyroscopes can be introduced to obtain the voltage-induced Pockels phase. Due to the digital closed-loop detection scheme, the proposed OVS is insensitive to the fluctuation of the light intensity and the dynamic range is independent of the half-wave voltage of the Pockels crystal compared to the conventional crystal bulk-type with the light intensity based detection scheme. A prototype of the proposed OVS is designed and evaluated. The calculated results of the electric field distribution show that the maximal measured voltage of the sensing element is up to 15 kV. The dc voltage from 0 to 3000 V and 50 Hz ac voltage from 0 to 5000 V are measured with good linearity. The proposed OVS achieves accuracy within ± 1% and ± 0.44% with the measured dc voltage above 800 V and ac voltage above 500 V, respectively. The influences of the alignment error in the sensing element on the measurement accuracy are also theoretically analyzed and experimentally verified.  相似文献   

10.
A passively Q-switched tunable Yb-doped double-clad fiber laser is demonstrated with graphene epitaxially grown on SiC.The spectral tuning of the Q-switched fiber laser is implemented by rotating a quartz plate filter inside the cavity.The central wavelength of the fiber laser can be continuously tuned from 1038.54 to 1056.22 nm.The maximum pulse energy of 0.65 μJ is obtained at the pump power of 4.08 W,and the corresponding pulse duration and average output power are 1.60 μs and 35 mW,respectively.  相似文献   

11.
Presented in this work is a new class of optical fiber temperature sensor, of which the heat-expansion thin film is coated on the etched fiber. It uses the method that combine thermal carving technique with chemical etching. The sensitivity of the sensor is increased and the shape size is decreased. This sensor possesses the linear temperature response and the good repeatability. These sensors can be used to measure finely the temperature which is lower than 200°c.  相似文献   

12.
A novel relative humidity (RH) sensor based on single-mode–multimode–single-mode (SMS) fiber structure is presented. The sensors are created through coating a thin layer of polyvinyl alcohol (PVA) on the multimode fiber deleted the cladding trough HF solution cauterization as the sensitive cladding film, whose refractive index varies as a function of humidity level. Due to the SMS fiber structure's sensitivity to ambient refractive index, the transmission spectra of SMS fiber structure coated PVA film are modified under exposure to different ambient humidity levels ranging from 30% to 80% RH. The related numerical simulations of transmission spectra of SMS fiber structure with different surrounding refractive index are also proposed. The sensitive of the RH measurement of 0.09 nm/% RH in the range from 30% to 80% RH is experimentally achieved. Meanwhile the intensity of wavelength at 1543 nm is decreasing as the humidity increasing. The experimental results obtained are consistent with the conclusion obtained by numerical simulating.  相似文献   

13.
This study proposes a new hybrid Mach-Zehnder interferometric(MZI) sensor based on two core-offset attenuators and an abrupt taper in a single-mode fiber fabricated by a fiber-taper machine and electric arc discharge. When the distance between the two core-offset attenuators is stretched to 4500 μm, significant interference signals are detected with a prominent attenuation peak of ~28 dB. The proposed MZI can be used to measure temperature due to its low refractive index(RI) and strain cross-sensitivity. The temperature sensitivity is 34.95±0.04 and 106.70±0.04 pm/℃ in the temperature ranges of 14-250 and250-1000 ℃, respectively.  相似文献   

14.
超导转变边沿单光子探测器原理与研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
张青雅  董文慧  何根芳  李铁夫  刘建设  陈炜 《物理学报》2014,63(20):200303-200303
量子信息技术近十多年来的快速发展对单光子探测器的性能提出了更高的要求,高性能单光子探测器也因此受到了更多的关注.与传统的单光子探测器相比,超导转变边沿(TES)单光子探测器在探测效率、能量分辨、光子数分辨和暗计数等方面具有突出优势.目前,超导TES单光子探测器已经被成功地应用在量子光学实验和量子密钥分配系统中,未来在量子信息技术等研究领域具有更广泛的应用.本文从超导TES单光子探测器的工作原理、制备流程、测试系统、主要性能指标以及研究现状和进展等方面对该探测器技术进行简要综述.  相似文献   

15.
An NO2 photoacoustic sensor system with a high reflective mirror based on a low power blue diode laser is developed in this work. The excitation power is enhanced by increasing the number of reflections. Comparing with a traditional photoacoustic system, the pool constant is improved from 300.24(Pa·cm)/W to 1450.64(Pa·cm)/W, and the signal sensitivity of the photoacoustic sensor is increased from 0.016 μV/ppb to 0.2562 μV/ppb. The characteristics of temperature and humidity of the new photoacoustic sensor are also obtained, and the algorithm is adjusted to provide a quantitative response and drift of the resonance frequency. The results of this research provide a new method and concept for further developing the NO2 photoacoustic sensors.  相似文献   

16.
An optical fiber curvature sensor based on a pressure-induced birefringence singlemode fiber loop mirror is presented. The birefringer SMF is made by applying a transverse force against a short length of singlemode fiber. The length of the sensing element for the curvature sensing is about 150 mm. The sensitivity of the curvature measurement experimentally is 0.0263 m−1/pm. And the temperature effect of the proposed sensor is also analyzed. Comparing with the sensor of photonic crystal fiber, it is more convenient and simply.  相似文献   

17.
建立简单模型,推导了晶体包层型光纤偏振器消光比的表达式,分析了消光比随锥腰直径和晶体包层长度的变化关系。兼顾锥腰光纤强度要求,对偏振器制作参数进行优化分析,并进行相应的实验研究。实验结果表明选择合适参数制作的偏振器,消光比优于30 dB,损耗小于0.5 dB,在-50 ℃~+70 ℃温度范围内消光比变化小于1.5 dB,损耗变化小于0.5 dB,具有很好的温度性能和稳定性  相似文献   

18.
吴家梁  林宝勤  达新宇 《中国物理 B》2016,25(8):88101-088101
In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic(EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification,the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices.  相似文献   

19.
A highly sensitive all-fiber humidity sensor is demonstrated. The sensor behaves as a humidity dependent optical switch between 85% and 90% RH. This sensor also offers the advantages of simple structure and low cost and its response is fast and reversible in nature. The typical humidity response of the sensor is suitable for using it as a human breath rate monitor.  相似文献   

20.
Jiu-Huan Chen 《中国物理 B》2023,32(1):17302-017302
The unique plasmon resonance characteristics of nanostructures based on metal clusters have always been the focus of various plasmon devices and different applications. In this work, the plasmon resonance phenomena of polyhedral silver clusters under the adsorption of NH3, N2, H2, and CH4 molecules are studied by using time-dependent density functional theory. Under the adsorption of NH3, the tunneling current of silver clusters changes significantly due to the charge transfer from NH3 to silver clusters. However, the effects of N2, H2, and CH4 adsorption on the tunneling current of silver clusters are negligible. Our results indicate that these silver clusters exhibit excellent selectivities and sensitivities for NH3 detection. These findings confirm that the silver cluster is a promising NH3 sensor and provide a new method for designing high-performance sensors in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号