首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
Mechanical spectroscopy measurement is performed to study the internal friction of nanocrystalline (NC) nickel with an average grain size of 23 nm from room temperature to 610 K. An internal friction peak is observed at about 550 K, which corresponds to the Curie transition process of the NC nickel according to the result of magnetization test. Moreover, the fact that the explained by an analytical model Curie temperature of NC nickel is based on the weakening of cohesive lower than that of coarse-grained nickel is energy.  相似文献   

2.
Nanocrystalline LiF:Mg,Cu,P phosphor material of different shapes and sizes (microcrystalline cubic shape, nanorod shape and nanocrystalline cubical shaped) have been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and other dosimetric characteristics of the phosphor are studied and presented here. The formation of the materials was confirmed by the X-ray diffraction (XRD). Its shapes and sizes were also observed using scanning electron microscope (SEM). The TL glow curve of the microcrystalline powder shows a prominent single peak at 408 K along with another peak of lesser intensity at around 638 K. On the contrary, the nanocrystalline rod shaped particles show a peak of low intensity at 401 K and a prominent peak around 700 K while the nanocrystalline particles in cubical shapes again show two peaks, one at around 407 K and the other at around 617 K, of which the lower temperature (407 K) peak is more prominent. The glow curve structure changes at very high doses (100 kRad) and some new peaks appear at around 525 and 637 K also the first peak appearing at around 401 K becomes prominent. The observed changes in TL due to the change in the shape and sizes of the nanophosphor have been reported. The PL has also been studied and various excitation and emission peaks observed due to the presence of various impurities are explained. The observed results have been explained in the light of asymmetrical crystal field effects due to asymmetrical shapes of the nanocrystalline phosphor. The comparison of these properties with the microcrystalline material prepared by the same co-precipitation method is also done.  相似文献   

3.
N.P. Gurao 《哲学杂志》2013,93(5):798-817
The large-strain deformation of nanocrystalline nickel was investigated at room temperature and cryogenic (liquid N2) temperature. Deformation mechanisms ranging from grain boundary sliding to slip, operate due to a wide distribution of grain sizes. These mechanisms leave their finger print in the deformation texture evolution during rolling of nanocrystalline nickel. The occurrence and severance of different mechanisms is understood by a thorough characterization of the deformed samples using X-ray diffraction, X-ray texture measurements, electron back-scattered diffraction and transmission electron microscopy. Crystal plasticity-based viscoplastic self-consistent simulations were used to further substantiate the experimental observations. Thus, a comprehensive understanding of deformation behavior of nanocrystalline nickel, which is characterized by simultaneous operation of dislocation-dominated and grain boundary-mediated mechanisms, has been developed.  相似文献   

4.
杨文献  季莲  代盼  谭明  吴渊渊  卢建娅  李宝吉  顾俊  陆书龙  马忠权 《物理学报》2015,64(17):177802-177802
利用分子束外延方法制备了应用于四结光伏电池的1.05 eV InGaAsP薄膜, 并对其超快光学特性进行了研究. 温度和激发功率有关的发光特性表明: InGaAsP材料以自由激子发光为主. 室温下InGaAsP材料的载流子发光弛豫时间达到10.4 ns, 且随激发功率增大而增大. 发光弛豫时间随温度升高呈现S形变化, 在低于50 K时随温度升高而增大, 在50–150 K之间时减小, 而温度高于150 K时再次增大. 基于载流子弛豫动力学, 分析并解释了温度及非辐射复合中心浓度对样品材料载流子发光弛豫时间S形变化的影响.  相似文献   

5.
Glass samples of the system, Li2O-MgO-B2O3 containing different concentrations of nickel oxide (ranging from 0 to 1.0 mol%) were prepared by using the melt quenching technique. The optical absorption studies indicate that the nickel ions occupy both tetrahedral and octahedral positions in the glass network. However, the octahedral positions seem to be dominant when the concentration of nickel oxide is ?0.4 mol% in the glass matrix. When in the octahedral positions, nickel ions occupy the network modifying positions. This has a tremendous effect on the thermoluminescence, electrical conductivity and magnetic susceptibility studies. Electrical measurements were carried out as a function of frequency and temperature over the frequency range of 10-106 Hz and a temperature range of 303-523 K. The electric modulus formalism was applied to study the relaxation behavior by using the impedance data for all the samples at 403 K, and also for analyzing the relaxation behavior of the highest conducting sample (0.4 mol% of nickel oxide) at different temperatures. An attempt has been made to relate the measured properties to the structural modifications in the glass network due to the modifying effect of octahedral Ni2+ ions.  相似文献   

6.
The aging at room temperature of a nanocrystalline equiatomic ZnSe alloy produced by mechanical alloying was investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. The measured XRD patterns showed the presence of the peaks corresponding to the crystalline trigonal selenium (c-Se) phase. It is observed that the ZnSe phase is stable with aging. The appearance of the c-Se phase is attributed to the migration of Se atoms located at the interfacial component of the as-milled ZnSe nanostructure with aging.  相似文献   

7.
ZnO压敏陶瓷中缺陷的介电谱研究   总被引:3,自引:0,他引:3       下载免费PDF全文
从理论上证明了介电松弛过程在介电谱上等效于电子松弛过程,认为室温下105Hz处特征损耗峰起源于耗尽层处本征缺陷所形成的电子陷阱.在-130—20℃范围内测量了三种配方ZnO陶瓷的介电频谱,发现ZnO压敏陶瓷室温下105Hz处的特征损耗峰在低温下分裂为两个特征峰,认为它们起源于耗尽层中的本征缺陷(锌填隙或/和氧空位)的电子松弛过程.发现ZnO-Bi2O3二元系陶瓷特征峰仅仅由锌填隙引起,而ZnO-Bi2关键词: ZnO压敏陶瓷 本征缺陷 介电谱 热处理  相似文献   

8.
《Surface science》1987,179(1):47-58
The adsorption states of benzonitrile and alkyl cyanides on evaporated nickel and palladium films have been studied by X-ray photoelectron spectroscopy. Two N 1s peaks are observed for adsorbed benzonitrile on nickel; one is located at the same binding energy as that of condensed benzonitrile (399.8 eV) and the other is located at much lower binding energy (397.9–397.6 eV). The former species is seen only at low temperature (170 K) and adsorbs weakly through nitrogen lone pair electrons. The latter species exists even at temperatures as low as ∼ 170 K but predominantly at room temperature. This species seems to adsorb with rehybridization of the CN triple bond, not to be bound through π electrons of the aromatic ring. On palladium, however, there are three kinds of adsorbed states for benzonitrile, giving three N 1s peaks (399.5, 398.0 and 397.4 eV). Two of them are similar to those on nickel and the other is assigned to the species rehybridized to less extent (nearly to sp2 hybridization) giving the N1s peak at 398.0 eV. The other nitriles studied in this work show adsorption behavior similar to benzonitrile on nickel and palladium.  相似文献   

9.
The temperature dependence of spin-lattice relaxation rates was analyzed for four high-spin nonheme iron proteins between 5 and 20 K, for three high-spin iron porphyrins between 5 and 118 K, and for four high-spin heme proteins between 5 and 150 to 298 K. For the nonheme proteins the zero-field splittings, D, are less than 0.7 cm(-1), and the relaxation is dominated by the Orbach and Raman processes. For the iron porphyrins and heme proteins D is between 4 and 12 cm(-1) and the relaxation is dominated by the Orbach process between about 5 and 100 K and by a local mode at higher temperatures. The relaxation rates for the heme proteins in glassy matrices extrapolated to values at room temperature that are similar to values obtained by NMR relaxivity in fluid solution. This similarity suggests that for high-spin Fe(III) heme proteins with effective intramolecular spin-lattice relaxation processes, the additional motional freedom gained when a relatively large protein goes from glassy solid to liquid solution at room temperature has little impact on spin-lattice relaxation.  相似文献   

10.
The high-temperature anelastic spectrum of the solid solution Sc-O has been investigated on a polycrystalline sample at oxygen concentrations between 0.024 and ∼0.9 at.% O, as estimated by residual resistivity and intentional O doping. Two thermally activated relaxation processes appear near 430 and 520 K for a vibration frequency of 3.5 kHz; both peaks are stable with thermal cycling and their intensities increase with the oxygen content, indicating that they are due to O jumps. The process at lower temperature has an intensity that strongly increases with increasing temperature, when measured at higher frequency (42 kHz), indicating that the relaxation occurs between states differing in energy by ∼0.3 eV. The peak is describable by a single relaxation time, and is interpreted as due to the stress-induced hopping of single oxygen atoms between the non-equivalent tetrahedral and octahedral interstitial sites. The process at high temperature is tentatively attributed to O pairs. An estimate of the specific resistivity of O atoms has been provided.  相似文献   

11.
Measurements were made of the deformation and fracture characteristics of nanocrystalline copper and nickel at temperatures between 4.2 and 300 K. It was observed that the flow stresses are sensitive to the sign of the load while deformation instability was observed at temperatures close to liquid-helium temperature. The temperature dependence of the yield stress was obtained. It was found that there is a range of a thermal deformation at low temperatures which extends to 60 K for nickel and 200 K for copper. Possible reasons for these characteristics in the deformation behavior of nanocrystalline materials are discussed, especially the role of quantum effects in the low-temperature deformation. Fiz. Tverd. Tela (St. Petersburg) 40, 1264–1267 (July 1998)  相似文献   

12.
Features of the formation of shear bands and nanocrystalline phases upon the megaplastic deformation of amorphous alloys based on iron, nickel, and titanium at room temperature in a Bridgman chamber are analyzed via transmission electron microscopy. It is shown that the transition from strongly localized to quasi-homogeneous plastic deformation occurs at a definite stage of the inhomogeneous plastic flow. Mechanisms based on the self-blocking of propagating shear bands by particles of the nanocrystalline phase that emerge due to a dissipative increase in the temperature along the front of shear bands are proposed for the delocalization of plastic flow.  相似文献   

13.
A ceramic SmAlO3 (SAO) sample is synthesized by the solid-state reaction technique. The Rietveld refinement of the X-ray diffraction pattern has been done to find the crystal symmetry of the sample at room temperature. An impedance spectroscopy study of the sample has been performed in the frequency range from 50 Hz to 1 MHz and in the temperature range from 313 K to 573 K. Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The Cole–Cole model is used to analyze the dielectric relaxation mechanism in SAO. The temperature-dependent relaxation times are found to obey the Arrhenius law having an activation energy of 0.29 eV, which indicates that polaron hopping is responsible for conduction or dielectric relaxation in this material. The complex impedance plane plot of the sample indicates the presence of both grain and grain-boundary effects and is analyzed by an electrical equivalent circuit consisting of a resistance and a constant-phase element. The frequency-dependent conductivity spectra follow a double-power law due to the presence of two plateaus.  相似文献   

14.
We proposed a technique to observe magnetostrictive coefficients of a single crystal specimen with X-ray diffraction. An angle between a direction of crystallographic orientation and a direction of magnetic field could be estimated with two kinds of diffraction peaks which were found with an X-ray four-circle goniometer. The magnetostriction was measured by a shift of Bragg angle. This technique was suitable for a case to observe the magnetostrictive coefficient which varied as a function of the magnetic field direction. We applied the technique to a single crystal specimen of nickel and showed dependences of the magnetostriction on the magnetic field strength and its direction around an axis of easy magnetization at room temperature.  相似文献   

15.
The ceramic sample of Y0.85Ca0.15Ba2Cu3O7−δ was prepared by standard solid-state reaction method, and samples with different oxygen concentration were obtained by quenching from high temperature. The internal friction was measured using the vibrating reed method from liquid-nitrogen temperature to room temperature at kilohertz frequency. An internal friction peak was observed around 250 K in Y0.85Ca0.15Ba2Cu3O7−δ quenched from 1023 K. The peak is related to the one observed around 220 K (labeled as P3 peak) in undoped YBa2Cu3O7−δ (Y123). This result shows the dependence of P3 peak on carriers density and P3 peak has a strong correlation to the abnormal behavior of Y123 in the underdoped range. The variation of two low temperature thermal activated relaxation peaks (P1 and P2) on oxygen content were also investigated. And consistent explanations were given based on all recent researches.  相似文献   

16.

Using powerful synchrotron X-ray radiation of the beamline “Belok” operated by the National Research Center “Kurchatov Institute,” we perform X-ray diffraction (XRD) study of an intact, virgin (not subjected to any external mechanical loads) particle isolated from reactor powder of ultrahigh molecular weight polyethylene. Along with the peaks originating from the orthorhombic phase, we detect the peaks characteristic of the monoclinic phase that is stable only under mechanical stress, suggesting that the mechanical stress that leads to the formation of the monoclinic phase and persists at room temperature develops during the polymer synthesis. The monoclinic phase gradually disappears when the particle is heated stepwise in increments of 5 K, and its peaks become undetectable when the temperature reaches 340 K. We contrast the results obtained for the phase composition of the virgin particle to those for a tablet prepared by compaction of the same reactor powder at room temperature. XRD analyses of the tablet were performed on D2 Phaser (Bruker) instrument. The monoclinic phase that originates during the polymer synthesis and the one that forms in the tablet during compaction have different parameters. We discuss the mechanisms by which these two different monoclinic phases originate during the processes involved.

  相似文献   

17.
不同厚度CdSe阱层的表面上自组织CdSe量子点的发光性质   总被引:2,自引:2,他引:0  
利用变温和变激发功率分别研究了不同厚度CdSe阱层的自组织CdSe量子点的发光。稳态变温光谱表明:低温下CdSe量子阱有很强的发光,高温猝灭,而其表面上的量子点发光可持续到室温,原因归结于量子点的三维量子尺寸限制效应;变激发功率光谱表明:量子点激子发光是典型的自由激子发光,且在功率增加时。宽阱层表面上的CdSe量子点有明显的带填充效应。通过比较不同CdSe阱层厚度的样品的发光,发现其表面上量子点的发光差异较大,这可以归结为阱层厚度不同导致应变弛豫的程度不同,直接决定了所形成量子点的大小与空间分布[1]。  相似文献   

18.
Zinc-substituted cobalt ferrites, Co1–xZnxFe2O4, were for the first time successfully prepared by forced hydrolysis method. The obtained materials are single phase, monodispersed nanocrystalline with an average grain size of about 3 nm. These materials are superparamagnetic at room temperature and ferrimagnetic at temperature lower than the blocking temperature. When the zinc substitution increases from x=0 to 0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nanocrystalline magnetic ferrites for practical applications.  相似文献   

19.
Mössbauer measurements have been performed on amorphous and nanocrystalline alloy ribbons of nominal composition Fe86Zr7Cu1B6. The nanocrystalline samples were obtained by annealing the as-quenched alloy at different temperatures in the range between 650 and 870 K. Mössbauer spectra of the as-quenched amorphous sample have been recorded at 77 K, room temperature and above the Curie temperature (330 K) at 360 K. We have also performed Mössbauer measurements at room temperature in the nanocrystalline alloys to characterize the phases that appear after the annealing and their relative concentration. The as-quenched sample spectra reveal the existence of two inequivalent sites for Fe. Such a feature is also observed in the remaining amorphous phase of the annealed samples. In the first steps of crystallization, -Fe precipitates and its concentration increases with the annealing temperature. The experimental results suggest that the composition of the whole amorphous phase does not suffer large changes during crystallization.  相似文献   

20.
本文报道利用578.4nm的脉冲光泵浦,在室温和77K下,观察到LiYF4:Nd3+单晶中的上转换蓝光。由发光强度与泵浦光强度平方的直线关系,确定此上转换过程是双光子过程.通过对吸收谱和激发谱以及衰减曲线的研究,确定其上转换激发机制为两步激发和能量传递上转换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号