首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper studies the asymptotic stability problem for a class of impulsive switched systems with time invariant delays based on linear matrix inequality (LMI) approach. Some sufficient conditions, which are independent of time delays and impulsive switching intervals, for ensuring asymptotical stability of these systems are derived by using a Lyapunov–Krasovskii technique. Moreover, some appropriate feedback controllers, which can stabilize the closed-loop systems, are constructed. Illustrative examples are presented to show the effectiveness of the results obtained.  相似文献   

2.
This paper investigates the uniform stability and the uniform asymptotical stability of impulsive switched systems with time delay. By employing the method of Razumikhin–Lyapunov functional, several Razumikhin-type theorems of uniform stability and uniform asymptotical stability are established, which improve some of the existing results. Several examples are also given to illustrate the results.  相似文献   

3.
In this paper, we consider the input-to-state stability (ISS) of impulsive control systems with and without time delays. We prove that, if the time-delay system possesses an exponential Lyapunov–Razumikhin function or an exponential Lyapunov–Krasovskii functional, then the system is uniformly ISS provided that the average dwell-time condition is satisfied. Then, we consider large-scale networks of impulsive systems with and without time delays and prove that the whole network is uniformly ISS under the small-gain and the average dwell-time condition. Moreover, these theorems provide us with tools to construct a Lyapunov function (for time-delay systems, a Lyapunov–Krasovskii functional or a Lyapunov–Razumikhin function) and the corresponding gains of the whole system, using the Lyapunov functions of the subsystems and the internal gains, which are linear and satisfy the small-gain condition. We illustrate the application of the main results on examples.  相似文献   

4.
In this paper, we focus on the robust exponential stability of a class of uncertain nonlinear impulsive switched systems with switching delays. We introduce a novel type of piecewise Lyapunov-Razumikhin functions. Such functions can efficiently eliminate the impulsive and switching jump of adjacent Lyapunov functions at impulsive switching instants. By Razumikhin technique, the delay-independent criteria of exponential stability are established on the minimum dwell time. Finally, an illustrative numerical example is presented to show the effectiveness of the obtained theoretical results.  相似文献   

5.
In this paper, exponential stability criteria of impulsive switched systems with variable delays are introduced. Based on some impulsive delay differential inequalities, some general criteria for the exponential stability are obtained. Finally, an example is given to illustrate the effectiveness of the theory.  相似文献   

6.
This paper studies a nonautonomous Lotka-Volterra dispersal systems with infinite time delay which models the diffusion of a single species into n patches by discrete dispersal. Our results show that the system is uniformly persistent under an appropriate condition. The sufficient condition for the global asymptotical stability of the system is also given. By using Mawhin continuation theorem of coincidence degree, we prove that the periodic system has at least one positive periodic solution, further, obtain the uniqueness and globally asymptotical stability for periodic system. By using functional hull theory and directly analyzing the right functional of almost periodic system, we show that the almost periodic system has a unique globally asymptotical stable positive almost periodic solution. We also show that the delays have very important effects on the dynamic behaviors of the system.  相似文献   

7.
In this paper, the author studies the stability of delayed reset control systems with distributed state resetting. First, the concept of distributed state reset is proposed which is capable of compensating for the performance deterioration caused by time delays. Second, a sufficient condition for asymptotical stability based on the Lyapunov–Krasovskii functional method is proved, and a sufficient condition in terms of LMIs to ensure asymptotical stability of reset systems with piecewise constant reset mappings is obtained. Last, an illustrative example is provided to show that compared to the traditional reset scheme, the proposed distributed state reset scheme is potentially capable of achieving better performance.  相似文献   

8.
In this paper, a general class of impulsive delayed switched systems is considered. By employing the Lyapunov–Razumikhin method and some analysis techniques, we established several global asymptotic stability and global exponential stability criteria for the considered impulsive delayed switched systems, which improve and extend some recent works. As an application, the result of global exponential stability are used to study a class of uncertain linear switched systems with time‐varying delays. Several LMI‐based conditions are proposed to guarantee the global robust stability and global exponential stabilization. The designed memoryless state feedback controller can be easily checked by the LMI toolbox in Matlab. Moreover, the dwell time constraint is imposed for the switching law. Finally, two numerical examples and their simulations are given to show the effectiveness of our proposed results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers the problem of practical finite-time stability (PFTS) for switched nonlinear time-varying (SNTV) systems. Starting with nonlinear time-varying (NTV) systems, a new sufficient condition is proposed to verify the PFTS of systems by using an improved Lyapunov function. Then, the results obtained are extended to study the PFTS of SNTV systems. Two stability conditions are proposed for SNTV systems under arbitrary switching, moreover, the time and region of convergence are also given. Furthermore, an initial state-dependent dwell time method is introduced to study the PFTS of SNTV systems. Three stability conditions are proposed by using the methods of initial state-dependent minimum dwell time (ISD-MDT) and initial state-dependent average dwell time (ISD-ADT), respectively. The comparisons between the obtained results and the existing results are also given, and the obtained results are extended to impulsive switched nonlinear time-varying (ISNTV) systems. Finally, a numerical example is provided to illustrate the theoretical results.  相似文献   

10.
This paper addresses the stability problems of perturbed switched nonlinear systems with time-varying delays. It is assumed that the nominal switched nonlinear system (perturbation-free system) is uniformly exponentially stable and that the perturbations satisfy a linear growth bound condition. It is revealed that there exists an upper bound of perturbation guaranteeing that the perturbed system preserves the stability property of the nominal system, locally or globally, depending on both perturbations and the nominal system itself. An example is provided to illustrate the proposed theoretical results.  相似文献   

11.
利用脉冲微分方程的对比定理以及李雅普诺夫函数法,我们研究了一类具有脉冲效应的浮游生物模型的持久性以及概周期解.文中所得结论改进了以往的研究成果.文中所用的研究方法可以用来研究其他带有脉冲的生物数学模型的持久性以及概周期解.最后,我们总结阐述了脉冲如何影响模型的持久性,概周期解以及一致渐进稳定性.  相似文献   

12.
The global uniform exponential stability of switched positive linear impulsive systems with time-varying delays and all unstable subsystems is studied in this paper, which includes two types of distributed time-varying delays and discrete time-varying delays. Switching behaviors dominating the switched systems can be either stabilizing and destabilizing in the new designed switching sequence. We design new linear programming algorithm process to find the feasible ratio of stabilizing switching behaviors, which can be compensated by unstable subsystems, destabilizing switching behaviors, and impulses. Speci cally, we add a kind of nonnegative impulses which is consistent with the switching behaviors for the systems. Employing a multiple co-positive Lyapunov-Krasovskii functional, we present several new sufficient stability criteria and design new switching sequence. Then, we apply the obtained stability criteria to the exponential consensus of linear delayed multi-agent systems, and obtain the new exponential consensus criteria. Three simulations are provided to demonstrate the proposed stability criteria.  相似文献   

13.
In this paper, we study the stability of a class of impulsive functional differential equations with infinite delays. We establish a uniform stability theorem and a uniform asymptotic stability theorem, which shows that certain impulsive perturbations may make unstable systems uniformly stable, even uniformly asymptotically stable.  相似文献   

14.
This paper concerns the problem of global exponential synchronization for a class of switched neural networks with time-varying delays and unbounded distributed delays via impulsive control method. By using Lyapunov stability theory, new synchronization criterion is derived. In our synchronization criterion, the switching law can be arbitrary and the concept of average impulsive interval is utilized such that the obtained synchronization criterion is less conservative than those based on maximum of impulsive intervals. Numerical simulations are given to show the effectiveness and less conservativeness of the theoretical results.  相似文献   

15.
This paper considers the problem of fixed-time stability (FTS) for switched nonlinear time-varying (NTV) systems. Firstly, three sufficient conditions are proposed to verify the FTS of NTV systems by using the improved Lyapunov function, which has a tighter upper bound of time derivative. Then, two FTS conditions are given for the switched NTV system by extending the obtained results, moreover, a switching strategy is also provided by using the minimum dwell time method. Finally, the obtained results are extended to study the FTS of impulsive NTV systems. Comparing with the existing results, the obtained conditions have two improvements: (1) provides a more accurate estimate for the upper bound of settling time of NTV systems, and (2) allows the Lyapunov function to increase at the switching instant of switched NTV (or impulsive NTV) systems. Two numerical examples are given to illustrate the theoretical results.  相似文献   

16.
研究了一类带有随机丢包的非周期采样网络化控制系统的镇定问题.不同于传统观点往往将时滞看作系统稳定性的消极因素,考虑时间滞后对系统稳定性的积极影响,并提出一个新颖的主动时间滞后控制方法来镇定该系统.为了分析时间滞后控制的积极作用并获得较低保守性的结论,首先把带随机丢包的非周期采样系统建模为带固定切换率的随机脉冲切换系统,...  相似文献   

17.
This paper studies the global exponential stabilization of impulsive functional differential equations with infinite delays or finite delays by using Lyapunov functions and improved Razumikhin technique. The results obtained in this paper improve and complement ones from some recent works. Moreover, the Razumikhin condition obtained is very simple and effective to implement in real problems and it is helpful for investigating the stability of control systems and synchronization control of chaotic systems. Finally, two examples and their simulations are given to show the effectiveness and advantages of our results.  相似文献   

18.
Matrix-valued dynamical systems are an important class of systems that can describe important processes such as covariance/second-order moment processes, or processes on manifolds and Lie Groups. We address here the case of processes that leave the cone of positive semidefinite matrices invariant, thereby including covariance and second-order moment processes. Both the continuous-time and the discrete-time cases are first considered. In the LTV case, the obtained stability and stabilization conditions are expressed as differential and difference Lyapunov conditions which are equivalent, in the LTI case, to some spectral conditions for the generators of the processes. Convex stabilization conditions are also obtained in both the continuous-time and the discrete-time setting. It is proven that systems with constant delays are stable provided that the systems with zero-delays are stable—which mirrors existing results for linear positive systems. The results are then extended and unified into an impulsive formulation for which similar results are obtained. The proposed framework is very general and can recover and/or extend many of the existing results in the literature on linear systems related to (mean-square) exponential (uniform) stability. Several examples are discussed to illustrate this claim by deriving stability conditions for stochastic systems driven by Brownian motion and Poissonian jumps, Markov jump systems, (stochastic) switched systems, (stochastic) impulsive systems, (stochastic) sampled-data systems, and all their possible combinations.  相似文献   

19.
This paper considers the impulsive functional differential equations with infinite delays or finite delays. Some new sufficient conditions are obtained to guarantee the global exponential stability by employing the improved Razumikhin technique and Lyapunov functions. The result extends and improves some recent works. Moreover, the obtained Razumikhin condition is very simple and effective to implement in real problems and it is helpful to investigate the stability of delayed neural networks and synchronization problems of chaotic systems under impulsive perturbation. Finally, a numerical example and its simulation is given to show the effectiveness of the obtained result in this paper.  相似文献   

20.
This paper investigates the asymptotical stability of Riemann‐Liouville q‐fractional neutral systems with mixed delays (constant time delay and distributed delay). By constructing some appropriate Lyapunov‐Kravsovskii functionals, some sufficient conditions on delay‐dependent and delay‐independent asymptotical stability are obtained in terms of linear matrix inequality (LMI). Our employed method is based on the direct calculation of quantum derivatives of the Lyapunov‐Kravsovskii functionals. Finally, two examples are presented to demonstrate the availability of our obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号