首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the problem of dynamic output feedback fault tolerant controller design for discrete-time switched systems with actuator fault. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault. Then based on the obtained online fault estimation information, a switched dynamic output feedback fault tolerant controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results.  相似文献   

2.
In this paper, the problem of nonlinear multiagent system with reliable control is taken into account. The prescribed system consists of additive time-varying delay, actuator faults with both linear and nonlinear functions. The main focus of this paper is to design a reliable control which guarantees the stability and consensus condition of the proposed system. Actuator faults with linear and nonlinear functions are considered in the control input. From the implementation of integral inequality, the linear matrix inequality format is derived by constructing the suitable Lyapunov Krasovskii functional for the specified system. Terminally numerical examples are furnished for the efficiency of the specified method.  相似文献   

3.
本文针对一类不确定的长时延网络控制系统,在系统方程右端加上扰动项,利用李亚普诺夫函数,借助线性矩阵不等式,设计出了使系统具有H∞性格指标的闭环系统渐近稳定充分条件,并设计出了状态反馈控制器,仿真实例表明结论具有可行性与有效性。  相似文献   

4.
In this paper, a robust adaptive neural network synchronization controller is proposed for two chaotic systems with input time delay and uncertainty. The studied chaotic system may possess a wide class of nonlinear time-delayed input uncertainty. The radial basis function (RBF) neural network is used to approximate the unknown continuous bounded function item of the time delay uncertainty via appropriate weight value updated law. With the output of RBF neural network, a robust adaptive synchronization control scheme is presented for the time delay uncertain chaotic system. Finally, a simulation example is used to illustrate the effectiveness of the proposed synchronization control scheme.  相似文献   

5.
This paper is concerned with the problem of hybrid output regulation for a class of linear impulsive systems with aperiodic jumps. Firstly, by leveraging time-dependent Lyapunov function technique and impulsive control theory, sufficient conditions for achieving output regulation are obtained in state feedback case. Then, the results are extended to error feedback case by constructing an impulsive observer. In this framework, two novel hybrid controllers are designed. Such controllers only need the discrete-time system state or error signal for feedback. The complete procedures for controller designs are also presented. Finally, two illustrative examples, including a numerical example and an LC circuit, are given to show the validity and applicability of the proposed control laws.  相似文献   

6.
This paper addresses the problem of semi-global finite-time decentralized output feedback control for large-scale systems with both higher-order and lower-order terms. A new design scheme is developed by coupling the finite-time output feedback stabilization method with the homogeneous domination approach. Specifically, we first design a homogeneous observer and an output feedback control law for each nominal subsystem without the nonlinearities. Then, based on the homogeneous domination approach, we relax the linear growth condition to a polynomial one and construct decentralized controllers to render the nonlinear system semi-globally finite-time stable.  相似文献   

7.
The shortest-paths problem is a fundamental problem in graph theory and finds diverse applications in various fields. This is why shortest path algorithms have been designed more thoroughly than any other algorithm in graph theory. A large number of optimization problems are mathematically equivalent to the problem of finding shortest paths in a graph. The shortest-path between a pair of vertices is defined as the path with shortest length between the pair of vertices. The shortest path from one vertex to another often gives the best way to route a message between the vertices. This paper presents anO(n 2) time sequential algorithm and anO(n 2/p+logn) time parallel algorithm on EREW PRAM model for solving all pairs shortest paths problem on circular-arc graphs, wherep andn represent respectively the number of processors and the number of vertices of the circular-arc graph.  相似文献   

8.
An output feedback controller is proposed for a class of uncertain nonlinear systems preceded by unknown backlash-like hysteresis, where the hysteresis is modeled by a differential equation. The unknown nonlinear functions are approximated by fuzzy systems based on universal approximation theorem, where both the premise and the consequent parts of the fuzzy rules are tuned with adaptive schemes. The proposed approach does not need the availability of the states, which is essential in practice, and uses an observer to estimate the states. An adaptive robust structure is used to cope with lumped uncertainties generated by state estimation error, approximation error of fuzzy systems and external disturbances. Due to its adaptive structure the bound of lumped uncertainties does not need to be known and at the same time the chattering is attenuated effectively. The strictly positive real (SPR) Lyapunov synthesis approach is used to guarantee asymptotic stability of the closed-loop system. In order to show the effectiveness of the proposed method simulation results are illustrated.  相似文献   

9.
10.
This paper considers the problem of stabilization for a class of stochastic Markov jump distributed delay systems with partially known transition rates subject to saturating actuators. By employing local sector conditions and an appropriate Lyapunov function, a state memory feedback controller is designed to guarantee that the resulted closed-loop constrained systems are mean-square stochastic asymptotically stable. Some sufficient conditions for the solution to this problem are derived in terms of linear matrix inequalities. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

11.
The switching signal design for H performance of uncertain discrete switched systems with interval delay and linear fractional perturbations is considered in this paper. Some LMI stability criteria are proposed to design the switching signal and guarantee the H performance for discrete switched time-delay system. Some nonnegative inequalities are introduced to improve the conservativeness of the proposed results. A numerical example is illustrated to show the less conservativeness of the main result. Finally, a water quality model is also provided to demonstrate the practical applications of our proposed results.  相似文献   

12.
This paper utilizes an interval Pade approximate method together with interval arithmetic operation to convert a continuous-time uncertain system with input time-delay to an equivalent discrete-time interval model and transforms the robust control law of a continuous-time uncertain system with input time delay into an equivalent one of a sampled-data uncertain system with input time delay. The developed discrete-time interval model tightly encloses the exact discrete-time uncertain system with input time delay. Based on the law of mean and inclusion theory, a perturbed digital control law of input time-delay sampled-data uncertain system is newly presented, so that the states of the digitally controlled sample-data uncertain system closely match those of the originally well-designed continuous-time uncertain system.  相似文献   

13.
This work examines almost sure stability of a pure random delay system whose delay time is modeled by a finite state continuous-time Markov chain with two-time scales. The Markov chain contains a fast-varying part and a slowly-changing part. Using the properties of the weighted occupation measure of the Markov chain, it is shown that the overall system?s almost-sure-asymptotic stability can be obtained by using the “averaged” delay. This feature implies that even if some longer delay times may destabilize the system individually, the system may still be stable if their impact is balanced. In other words, the Markov chain becomes a stabilizing factor. Numerical results are provided to demonstrate our results.  相似文献   

14.
Sufficient conditions are obtained for the permanence of a two species competitive system with infinite delay and feedback controls. It is shown that the controls can avoid the extinction of the species.  相似文献   

15.
研究一类具有状态时滞和输入时滞的时变时滞线性系统.首先,通过选取合适的Lyapunov-Krasovskii泛函,应用LMI方法和Lyapunov-Krasovskill稳定性定理对时滞相关的系统进行稳定性分析,并设计了相应的控制器.改进了时变时滞线性系统方面的一些结果.最后用实例验证所得到结果.  相似文献   

16.
This paper is concerned with the boundary stabilization and parameter estimation of an Euler–Bernoulli beam equation with one end fixed, and control and uncertain amplitude of harmonic disturbance at another end. A high-gain adaptive regulator is designed in terms of measured collocated end velocity. The existence and uniqueness of the classical solution as well as smooth solution of the closed-loop system are justified. It is shown that the state of the system approaches the standstill as time goes to infinity and meanwhile the estimated parameter converges to the unknown parameter.  相似文献   

17.
18.
This paper studies the finite-time stability (FTS) for a class of hybrid dynamical systems with deviating argument. An improved hybrid control scheme including sampled-data control as well as impulsive control is presented. Based on the theory of differential equations with piecewise constant argument of generalized type (PCAG) and the method of average impulsive interval (AII), several Lyapunov-based sufficient criteria for FTS are obtained in terms of linear matrix inequalities (LMIs), which can be verified via Matlab. The hybrid controller, in which the sampling instants could be different from the impulse instants, is designed by the established LMIs. The results in present paper are more convenient for application and less conservative than some existing ones. Finally, an example is given to illustrate the effectiveness and advantage of the obtained results.  相似文献   

19.
In this paper, we utilize a proper Lyapunov function and Lyapunov theorem, combined with LMIs method, in order to design a controller L, which ensures the synchronization between the transmission and the reception ends of the chaotic secure communication system with time-delay of output state. Meanwhile, for the purpose of increasing communication security, we encrypt and decrypt the original to-be-transmitted message with the techniques of n-shift cipher and public key. The result of simulation shows that the proposed method is able to synchronize the transmission and the reception ends of the system, and moreover, to recover the original message at the reception end. Therefore, the method proposed in this paper is effective and feasible to apply in the chaotic secure communication system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号