首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper, indium, and gallium chalcogenide nanocrystals (binary, ternary, and quaternary) have been used to fabricate high-efficiency thin-film solar cells. These solution-based methods are being scaled-up and may serve as the basis for the next generation of low-cost solar cells. However, the formation pathway to reach stoichiometric ternary CuInSe(2) or any chalcopyrite phase ternary or quaternary nanocrystal in the system has not been investigated but may be of significant importance to improving nanocrystal growth and discovering new methods of synthesis. Here, we present the results of X-ray diffraction, electron microscopy, compositional analysis, IR absorption, and mass spectrometry that reveal insights into the formation pathway of CuInSe(2) nanocrystals. Starting with CuCl, InCl(3), and elemental Se all dissolved in oleylamine, the overall reaction that yields CuInSe(2) involves the chlorination of the hydrocarbon groups of the solvent. Further, we show that the amine and alkene functional groups in oleylamine are not necessary for the formation of CuInSe(2) nanocrystals by conducting successful syntheses in 1-octadecene and octadecane. Hence, the role of oleylamine is not limited to nanocrystal size and morphology control; it also acts as a reactant in the formation pathway. Typically, the formation of copper selenide (CuSe) and indium selenide (InSe) nanocrystals precedes the formation of CuInSe(2) nanocrystals in oleylamine. But it was also found that Cu(2-x)Se (0 < x < 0.5) and In(2)Se(3) were the primary intermediates involved in the formation of CISe in a purely non-coordinating solvent such as 1-octadecene, which points to the surface-stabilization effect of the coordinating solvent on the less thermodynamically stable indium selenide (InSe) nanocrystals. We also show that the yield of the chalcopyrite phase of CuInSe(2) (as opposed to the sphalerite phase) can be increased by reacting CuSe nanocrystals with InCl(3).  相似文献   

2.
以氯金酸(HAuCl4)为前驱物, 油胺同时作为溶剂、表面稳定剂和还原剂, 通过简单的一步湿化学法合成超细金纳米线. 制备出的超细金纳米线不仅产量高、纯度高, 而且纵横比大, 纳米线平均直径~2 nm, 长度可达数十微米. 如果添加另一种还原剂油酸并调节油胺和油酸的体积比为1:1, 将生成直径为~9 nm的金纳米线. 通过改变反应温度和还原剂用量, 对该种超细金纳米结构的生长机制进行阐述说明: 以油胺为模板, 在油胺和一价金卤化物(AuCl)亲金键合形成的一维聚合链作用下, 被还原的金原子附着在已成核颗粒表面, 一维地生长成超细金纳米线.  相似文献   

3.
以绿色环保的油酰吗啉作为硒粉的溶剂,油胺作为表面包覆剂,通过简单的液相法制备了银铟硒纳米颗粒。X射线衍射和透射电子显微镜分析测试显示AgInSe2纳米颗粒属于四方黄铜矿相结构,粒径约为16 nm的六角盘状纳米晶。紫外可见光谱分析表明所制备的AgInSe2纳米颗粒禁带宽度约为1.22 eV。考察了反应时间对AgInSe2纳米颗粒尺寸的影响,发现颗粒的尺寸随着反应时间的延长而逐渐变大。对AgInSe2纳米颗粒的生长机制进行了初步探讨,油胺的选择性吸附及材料的晶体结构被认为是决定纳米颗粒形貌的主要因素。  相似文献   

4.
The fabrication of ultrathin single-crystal Au nanowires with high aspect ratio and that are stable in air is challenging. Recently, a simple wet-chemical approach using oleylamine has been reported for the synthesis of Au nanowires with micrometer length and 2 nm in diameter. Despite efforts to understand the mechanism of the reaction, an ultimate question about the role of oxygen (O(2)) during the synthesis remained unclear. Here we report that the synthesis of ultrathin Au nanowires employing oleylamine is strongly affected by the amount of O(2) absorbed in the reaction solution. Saturating the solution with O(2) leads to both a high-yield production of nanowires and an increase in their length. Nanowires with diameters of about 2 nm and lengths of 8 μm, which corresponds to an aspect ratio of approximately 4000, were produced. The role of oxygen is attributed to the enhanced oxidation of twin defects on Au nanoparticles formed in the first stage of the reaction. Understanding the role of oxidative etching is crucial to significantly increasing the yield and the length of ultrathin Au nanowires.  相似文献   

5.
The coating makes the wire bundle: High-quality free-standing copper nanowires have been successfully produced by disproportionation of Cu(+) in oleylamine. This provides an effective way to prepare high-quality copper nanowires, but also enriches synthetic routes to other nanostructures. These copper nanowires can self-assemble by surface ligand exchange of oleylamine with trioctylphosphine.  相似文献   

6.
This paper presents a facile synthesis of single-crystalline Au nanowires by reduction of HAuCl4 in oleic acid and oleylamine. The diameter of these micron-meter-long Au nanowires is controlled to be 3 and 9 nm by volume ratio of oleylamine and oleic acid. When linked between two gold electrodes, the 9 nm Au nanowire shows good electron conductivity with its breakdown current density reaching 3.5 x 10(12) A/m2. This demonstrates that the chemically made ultrathin Au nanowires can be used as a molecular-scale interconnect for nanoelectronic applications.  相似文献   

7.
表面活性剂控制的硒纳米线的室温生长   总被引:1,自引:0,他引:1  
以表面活性剂十二烷基硫酸钠(SDS)为形貌导向剂,利用Na2Se在室温碱性水溶液中的自发氧化,成功制备了Se纳米线。用TEM、SEM、EDX、XRD、HRTEM、SEAD等手段表征了Se纳米线的组成和结构。结果表明,合成的Se纳米线是沿六方相Se的[001]轴方向生长,具有良好的晶型结构。使用TEM对不同时间Se纳米结构的生长过程的形貌进行了跟踪,探讨了Se纳米线的形成机理,发现其形成与生长过程符合“solid-solution-solid”机理。同时,选择了具有特异官能团(如-OH,-COOH,-CONH2)的3种表面活性剂,研究它们在纳米硒的取向性生长中的导向作用,只有SDS能引导合成出高质量的Se纳米线。  相似文献   

8.
油胺/油酸稳定的CdSe量子点的绿色合成   总被引:1,自引:0,他引:1  
以液体石蜡为高温反应溶剂,油酸和油胺为混合稳定剂,利用高温热解法一步合成了高质量的CdSe量子点。通过紫外-可见吸收光谱、荧光发射光谱、红外光谱和X射线衍射等手段对量子点的光学性质和结构进行了表征。结果表明,油胺/油酸混合表面活性剂稳定的量子点吸收光谱峰形更尖锐,荧光发射光谱半峰宽更窄。反应温度和反应时间均对量子点的生长过程和光学性质有明显影响,220℃下反应15 min,荧光量子产率可达26%。得到的CdSe量子点为立方晶型,表面同时包覆了油酸和油胺,具有良好的光稳定性。该方法无需使用三烷基膦,价廉环保,且合成的CdSe量子点性质稳定、性能优越,有利于其在分析检测领域中的应用。  相似文献   

9.
Copper chalcogenide nanostructures (e.g. one‐ dimensional nanotubes) have been the focus of interest because of their unique properties and great potential in various applications. Their current fabrications mainly rely on high‐temperature or complicated processes. Here, with the assistance of theoretical prediction, we prepared Cu2?xE (E=S, Se) micro‐/nanotubes (NTs) with a hierarchical architecture by using copper nanowires (Cu NWs), stable sulfur and selenium powder as precursors at room temperature. The influence of reaction parameters (e.g. precursor ratio, ligands, ligand ratio, and reaction time) on the formation of nanotubes was comprehensively investigated. The resultant Cu2?xE (E=S, Se) NTs were used as counter electrodes (CE) of quantum‐dot‐sensitized solar cells (QDSSCs) to achieve a conversion efficiency (η) of 5.02 and 6.25 %, respectively, much higher than that of QDSSCs made with Au CE (η=2.94 %).  相似文献   

10.
Solution synthesis of germanium nanowires using a Ge2+ alkoxide precursor   总被引:1,自引:0,他引:1  
A simple solution synthesis of germanium (Ge0) nanowires under mild conditions (<400 degrees C and 1 atm) was demonstrated using germanium 2,6-dibutylphenoxide, Ge(DBP)2 (1), as the precursor where DBP = 2,6-OC6H3(C(CH3)3)2. Compound 1, synthesized from Ge(NR2)2 where R = SiMe3 and 2 equiv of DBP-H, was characterized as a mononuclear species by single-crystal X-ray diffraction. Dissolution of 1 in oleylamine, followed by rapid injection into a 1-octadecene solution heated to 300 degrees C under an atmosphere of Ar, led to the formation of Ge0 nanowires. The Ge0 nanowires were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis, and Fourier transform infrared spectroscopy. These characterizations revealed that the nanowires are single crystalline in the cubic phase and coated with oleylamine surfactant. We also observed that the nanowire length (0.1-10 microm) increases with increasing temperature (285-315 degrees C) and time (5-60 min). Two growth mechanisms are proposed based on the TEM images intermittently taken during the growth process as a function of time: (1) self-seeding mechanism where one of two overlapping nanowires serves as a seed, while the other continues to grow as a wire; and (2) self-assembly mechanism where an aggregate of small rods (<50 nm in diameter) recrystallizes on the tip of a longer wire, extending its length.  相似文献   

11.
简要综述了使用一价金复合物AuCl(油胺)作为前驱物合成形貌可控的金纳米结构的相关工作. 通过改变有机溶剂、添加异质金属纳米粒子及控制反应温度等手段, 成功合成出球形的金纳米粒子(平均直径12.7 nm)、超细金纳米线(平均直径1.8 nm)及超细金纳米棒(平均直径2 nm); 并通过牺牲磁性纳米粒子模板的方法合成出枝状金纳米结构. 除了对合成方法和过程的介绍, 还简要讨论了每种纳米结构的形成机制.  相似文献   

12.
Structural phase-controlled formation of binary Co(2)P and CoP nanocrystals is achieved by reacting cobalt(II) oleate with trioctylphosphine. In the absence of oleylamine, Co(2)P nanowires are formed at both 290 and 320 °C. In the presence of oleylamine, Co(2)P nanorods are formed at 290 °C, and CoP nanorods are formed at 320 °C. With the simultaneous reaction of iron(III) oleate and cobalt(II) oleate with trioctylphosphine in the presence of oleylamine, ternary Co(2)P-type cobalt-iron phosphide nanostructures are produced at both 290 and 320 °C, corresponding to rice-shaped Co(1.5)Fe(0.5)P nanorods and split Co(1.7)Fe(0.3)P nanostructures, respectively. The controlled incorporation of iron into cobalt phosphide can alter the magnetic properties from paramagnetic binary Co(2)P to ferromagnetic Co(2)P-type ternary cobalt-iron phosphide nanostructures. Meanwhile, the time-dependent morphological evolution from small nanodots/nanorods, through seeded growth to unique split nanostructures is demonstrated in one-pot reaction at 320 °C.  相似文献   

13.
Alloyed ternary CdS(1-x)Se(x) nanowires were synthesized by template-assisted electrodeposition, in which the ratio of S to Se in the nanowires was controlled by adjusting the relative amounts of the starting materials. Higher-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) showed that the alloyed ternary CdS(1-x)Se(x) nanowires are highly crystalline, and no phase-separated Cd was observed in these nanowires. Optical measurements indicated that the band-gap engineering can be realized in these CdS(1-x)Se(x) nanowires through modulating the composition of S and Se. With broadly tunable optical and electrical properties, these alloyed nanowires could be used in color-tuned nanolasers, biological labels, and nanoelectronics.  相似文献   

14.
《中国化学会会志》2017,64(11):1354-1359
High‐purity, large‐aspect‐ratio, and well‐dispersed copper nanowires (CuNWs) with an average diameter of 45 nm and length >100 μm were successfully synthesized by reducing a Cu(II) salt with glucose, with oleylamine (OM) and oleic acid (OA) serving as dual capping agents, through hydrothermal reduction. A systematic study of the effects of the copper salt, capping agents, reductant, and temperature on the morphology of CuNWs has been conducted. Our results indicate that CuNWs with different diameters can be obtained using different copper salts. The diameter of the as‐prepared CuNWs decreases with increasing amounts of OM/OA and glucose but increases with the increasing temperature of the reaction. By adjusting the experimental parameters, we could achieve controlled synthesis of CuNWs and obtain high‐quality CuNWs with different diameters of 45, 76, 85, 90, 100, 112, 135, and 175 nm.  相似文献   

15.
Zn(x)Cd(1-x)Se alloy nanowires, with composition x = 0, 0.2, 0.5, 0.7, and 1, have been successfully synthesized by a chemical vapor deposition (CVD) method assisted with laser ablation. The as-synthesized alloy nanowires, 60-150 nm in diameter and several tens of micrometers in length, complied with a typical vapor-liquid-solid (VLS) growth mechanism. The Zn(x)Cd(1-x)Se nanowires are single crystalline revealed from high-resolution transmission electron microscopic (HRTEM) images, selected area electron diffraction (SAED) patterns, and X-ray diffraction (XRD) measurement. Compositions of the alloy nanowires can be adjusted by varying the precursor ratios of the laser ablated target and the CVD deposition temperature. Crystalline structures of the Zn(x)Cd(1-x)Se nanowires are hexagonal wurtzite at x = 0, 0.2, and 0.5 with the [0 1 -1 0] growth direction and zinc blende at x = 0.7 and 1 with the [1 -1 1] growth direction. Energy gaps of the Zn(x)Cd(1-x)Se nanowires, determined from micro-photoluminescence (PL) measurements, change nonlinearly as a quadratic function of x with a bowing parameter of approximately 0.45 eV. Strong PL from the Zn(x)Cd(1-x)Se nanowires can be tuned from red (712 nm) to blue (463 nm) with x varying from 0 to 1 and has demonstrated that the alloy nanowires have potential applications in optical and sensory nanotechnology. Micro-Raman shifts of the longitudinal optical (LO) phonon mode observed in the Zn(x)Cd(1-x)Se nanowires show a one-mode behavior pattern following the prediction of a modified random element isodisplacement (MREI) model.  相似文献   

16.
The growth of stoichiometric CuInSe(2) (CIS) on Au substrates using electrochemical atomic layer deposition (E-ALD) is reported here. Parameters for a ternary E-ALD cycle were investigated and included potentials, step sequence, solution compositions and timing. CIS was also grown by combining cycles for two binary compounds, InSe and Cu(2)Se, using a superlattice sequence. The formation, composition, and crystal structure of each are discussed. Stoichiometric CIS samples were formed using the superlattice sequence by performing 25 periods, each consisting of 3 cycles of InSe and 1 cycle of Cu(2)Se. The deposits were grown using 0.14, -0.7, and -0.65 V for Cu, In, and Se precursor solutions, respectively. XRD patterns displayed peaks consistent with the chalcopyrite phase of CIS, for the as-deposited samples, with the (112) reflection as the most prominent. AFM images of deposits suggested conformal deposition, when compared with corresponding image of the Au on glass substrate.  相似文献   

17.
Enhancement of Se solubility in organic solvents without the use of alkylphosphine ligands is the key for phosphine-free synthesis of selenide semiconductor nanocrystals (NCs). In this communication, we demonstrate the dissolution of elemental Se in oleylamine by alkylthiol reduction at room temperature, which generates soluble alkylammonium selenide. This Se precursor is highly reactive for hot-injection synthesis of selenide semiconductor NCs, such as Cu(2)ZnSnSe(4), Cu(InGa)Se(2), and CdSe. In the case of Cu(2)ZnSnSe(4), for example, the as-synthesized NCs possessed small size, high size monodispersity, strong absorbance in the visible region, and in particular a promising increase in photocurrent under AM1.5 illumination. The current preparation of the Se precursor is simple and convenient, which will promote the synthesis and practical applications of selenide NCs.  相似文献   

18.
Morphology-controllable platinum nanostructures could be obtained by modulating the growth kinetics in oleylamine. The nanostructures evolve from spherical particles to branched networks with decreasing reaction temperature, and the complexity of the branched-network nanostructures increases with the extended reaction period. Size-dependent magnetic properties and enhanced ferromagnetism in dodecanethiol-capped Pt branched nanostructures indicate that the permanent magnetic moments are probably introduced by broken symmetry and charge transfer because charge transfers more effectively from dodecanethiol than from oleylamine.  相似文献   

19.
A novel FePt@Cu nanowire catalyst was prepared by the reduction of Cu(acac)(2) on the surface of FePt nanowires, in oleylamine (OAm). This nanowire catalyst efficiently epoxidised stilbene in the presence of molecular oxygen, and the conversion and selectivity were maintained with repeated use of the catalyst, compared with recycled catalyst.  相似文献   

20.
This Communication describes a facile route to the preparation of ultrathin gold nanowires using linear chains formed from [(oleylamine)AuCl] complex via aurophilic interaction. The linear chains, with AuI...AuI bonds as the backbone and surrounded by oleylamines, can group together to form bundles of polymeric strands. When the AuI was reduced to Au0 by reacting with Ag nanoparticles in hexane, the polymeric strands functioned as both the source of Au and the template to mediate the nucleation and growth of Au nanowires. Using this method, we were able to produce Au nanowires with an average diameter of approximately 1.8 nm and an aspect ratio of >1000 in high yields (approximately 70%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号