首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Motivated by recent experiments with Bechgaard salts, we investigate the competition between antiferromagnetism and triplet superconductivity in quasi-one-dimensional electron systems. We unify the two orders in an SO(4) symmetric framework, demonstrating the existence of such symmetry in one-dimensional Luttinger liquids. SO(4) symmetry strongly constrains the phase diagram, leading to coexistence regions of antiferromagnetic, superconducting, and normal phases, as observed in (TMTSF)(2)PF(6). We predict a sharp neutron scattering resonance in superconducting samples.  相似文献   

2.
Using various transport and magnetotransport probes, we study the coexistence of spin-density wave and superconductor states in (TMTSF)2ClO4 at various degrees of ClO4 anions ordering. In the two-phase complex state when both superconductivity and spin-density wave are observed in transport, we find prehistory effects, enhancement of the superconducting critical field, and strong spatial anisotropy of the superconducting state. These features are inconsistent with the conventional model of structural inhomogeneities produced by anion ordering transition. We reveal instead that superconductor and spin-density wave regions overlap on the temperature—dimerization gap V phase diagram, where V is varied by anion ordering. The effect of anion ordering on (TMTSF)2ClO4 properties is thus analogous to that of pressure on (TMTSF)2X (X = PF6 or AsF6), thereby unifying general picture of the coexistence of superconductivity and spin-density wave in these compounds.  相似文献   

3.
We study the effect of the magnetic field on the pairing state competition in organic conductors (TMTSF)2X by applying random phase approximation to a quasi-one-dimensional extended Hubbard model. We show that the singlet pairing, triplet pairing and the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconducting states may compete when charge fluctuations coexist with spin fluctuations. This rises a possibility of a consecutive transition from singlet pairing to FFLO state and further to Sz = 1 triplet pairing upon increasing the magnetic field. We also show that the singlet and Sz = 0 triplet components of the gap function in the FFLO state have “d-wave” and “f-wave” forms, respectively, which are strongly mixed.  相似文献   

4.
We study the effect of dimerization of TMTSF molecules and the effect of magnetic field (Zeeman splitting) on the phase competition in quasi one-dimensional organic superconductors (TMTSF)2X by applying the random phase approximation method. As for the dimerization effect, we conclude that due to the decrease of the dimerization, which corresponds to applying the pressure and cooling, spin and charge density wave states are suppressed and give way to a superconducting state. As for the magnetic field effect, we find generally that spin-triplet pairing mediated by a coexistence of 2kF spin and 2kF charge fluctuations can be strongly enhanced by applying magnetic field rather than triplet pairing due to a ferromagnetic spin fluctuations. Applying the above idea to (TMTSF)2X compounds, a magnetic field induced singlet-triplet transition is consistent with above mechanism in (TMTSF)2ClO4.  相似文献   

5.
We present a review of theoretical investigations into the Kohn-Luttinger nonphonon superconductivity mechanism in various 3D and 2D repulsive electron systems described by the Fermi-gas, Hubbard, and Shubin-Vonsovsky models. Phase diagrams of the superconducting state are considered, including regions of anomalous s-, p-, and d-wave pairing. The possibility of a strong increase in the superconducting transition temperature T c even for a low electron density is demonstrated by analyzing the spin-polarized case or the two-band situation. The Kohn-Luttinger theory explains or predicts superconductivity in various materials such as heterostructures and semimetals, superlattices and dichalcogenides, high-T c superconductors and heavy-fermion systems, layered organic superconductors, and ultracold Fermi gases in magnetic traps. This theory also describes the anomalous electron transport and peculiar polaron effects in the normal state of these systems. The theory can be useful for explaining the origin of superconductivity and orbital currents (chiral anomaly) in systems with the Dirac spectrum of electrons, including superfluid 3He-A, doped graphene, and topological superconductors.  相似文献   

6.
Using a renormalization group approach, we determine the phase diagram of an extended quasi-one-dimensional electron gas model that includes interchain hopping, nesting deviations, and both intrachain and interchain repulsive interactions. We find a close proximity of spin-density- and charge-density-wave phases and singlet d-wave and triplet f-wave superconducting phases. There is a striking correspondence between our results and recent puzzling experimental findings in the Bechgaard salts, including the coexistence of spin-density-wave and charge-density-wave phases and the possibility of a triplet pairing in the superconducting phase.  相似文献   

7.
We study the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state of spin fluctuation mediated superconductivity and focus on the effect of coexisting charge fluctuations. We find that (i) consecutive transitions from singlet pairing to FFLO and further to Sz=1 triplet pairing can generally take place upon increasing the magnetic field when strong charge fluctuations coexist with spin fluctuations and (ii) the enhancement of the charge fluctuations lead to a significant increase of the parity mixing in the FFLO state, where the triplet/singlet component ratio in the gap function can be close to unity. We propose that such consecutive pairing state transition and strong parity mixing in the FFLO state may take place in a quasi-one-dimensional organic superconductor (TMTSF)2X.  相似文献   

8.
Motivated by the recent discovery of superconductivity on the heterointerface LaAlO3/SrTiO3, we theoretically investigate the impurity-induced resonance states with coexisting spin singlet s- and triplet p-wave pairing symmetries by considering the influence of Rashba-type spin-orbit interaction (RSOI). Due to the nodal structure of the mixed gap function, we find single nonmagnetic impurity-induced resonance peaks appearing in the local density of state. We also analyze the evolutions of density of states and local density of states with the weight of triplet pairing component determined by the strength of RSOI, which will be widely observed in thin films of superconductors with surface or interface-induced RSOI, or various noncentrosymmetric superconductors in terms of point contact tunneling and scanning tunneling microscopy, and thus shed light on the admixture of the spin singlet and RSOI-induced triplet superconducting states.  相似文献   

9.
We review the normal and superconducting state properties of the unconventional triplet superconductor Sr2RuO4 with an emphasis on the analysis of the magnetic susceptibility and the role played by strong electronic correlations. In particular, we show that the magnetic activity arises from the itinerant electrons in the Ru d‐orbitals and a strong magnetic anisotropy occurs (χ+‐ < χzz) due to spin‐orbit coupling. The latter results mainly from different values of the g‐factor for the transverse and longitudinal components of the spin susceptibility (i.e. the matrix elements differ). Most importantly, this anisotropy and the presence of incommensurate antiferromagnetic and ferromagnetic fluctuations have strong consequences for the symmetry of the superconducting order parameter. In particular, reviewing spin fluctuation‐induced Cooper‐pairing scenario in application to Sr2RuO4 we show how p‐wave Cooper‐pairing with line nodes between neighboring RuO2‐planes may occur. We also discuss the open issues in Sr2RuO4 like the influence of magnetic and non‐magnetic impurities on the superconducting and normal state of Sr2RuO4. It is clear that the physics of triplet superconductivity in Sr2RuO4 is still far from being understood completely and remains to be analyzed more in more detail. It is of interest to apply the theory also to superconductivity in heavy‐fermion systems exhibiting spin fluctuations.  相似文献   

10.
We discuss the possibility of the coexistence of spin density waves (antiferromagnetism) and triplet superconductivity as a particular example of a broad class of systems where the interplay of magnetism and superconductivity is important. We focus on the case of quasi-one-dimensional metals, where it is known that antiferromagnetism is in close proximity to triplet superconductivity in the pressure versus temperature phase diagram. Over a range of pressures, we propose an intermediate nonuniform phase consisting of antiferromagnetic and triplet superconducting orders. In the coexistence region, we propose a flop transition in the spin density wave order parameter vector, which affects the nature of the superconducting state and leads to the appearance of several new phases.  相似文献   

11.
In materials without an inversion center of symmetry the spin degeneracy of the conducting band is lifted by an antisymmetric spin orbit coupling (ASOC). Under such circumstances, spin and parity cannot be separately used to classify the Cooper pairing states. Consequently, the superconducting order parameter is generally a mixture of spin singlet and triplet pairing states. In this paper we investigate the structure of the order parameter and its response to disorder for the most symmetric pairing state (A1). Using the example of the heavy Fermion superconductor CePt3Si, we determine characteristic properties of the superconducting instability. Depending on the type of the pairing interaction, the gap function is characterized by the presence of line nodes. We show that this line nodes move in general upon temperature. Such nodes would be essential to explain recent low-temperature data of thermodynamic quantities such as the NMR-T1 -1, London penetration depth, and heat conductance. Moreover, we study the effect of (non-magnetic) impurity on the superconducting state.  相似文献   

12.
We present a theory of superconductivity in doped insulators. In the magnetic metal state of the compound we obtain the self-consistency equations for the superconducting state in the spin-dependent impurity bands of both extended and localized states in the initial insulator gap. A BCS-type triplet pairing field is considered. We show that the superconducting gap in which single-electron extended states do not exist is overlapped by the distribution of the localized states. The formation of a latent superconducting gap is discussed in connection with the unusual properties of high-T c compounds. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 5, 419–424 (10 March 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

13.
We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three \({t_{{2_g}}}\) orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the \({d_{{x^2} - {y^2}}}\) orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.  相似文献   

14.
Summary The crystal of Bechgaard salt (TMTSF)2X) is considered as a system of defect-bounded finite-length fragments of the TMTSF stacks. The paramagnetic contribution χspin to the susceptibility of the system arises due to the thermal population of the triplet excited states of the fragments and considerably increases with temperature in accordance with experiment. The unusual dependence of the pressure fractional derivative of χspin on temperature is explained as well. For the average fragment length flowing to infinity our expression for χspin transforms into the known Pauli formula and becomes temperature independent.  相似文献   

15.
We have theoretically investigated the spin and charge fluctuations in the quasi-one dimensional organic superconductor (TMTSF)2ClO4. Using the extended multi-site Hubbard model, which contains four sites in a unit cell and the transfer energies obtained by the extended Hückel method, we calculate the linearized gap equation with the random phase approximation, to find novel order parameters of superconductivity due to several kinds of charge fluctuations induced by the anisotropic intersite repulsive interactions. For the singlet state, the order parameter with line nodes appears in the case of the strong charge fluctuation, while the order parameter with anisotropic gap suggested by Shimahara is reproduced in the spin fluctuation. The triplet state is also obtained for the wide parameter range of repulsive interactions due to a cooperation between charge and spin fluctuations.  相似文献   

16.
We propose a model of electron pairing via spin fluctuations in doped insulators. The bare states for the superconducting condensate correspond to impurity bands in the original band gap of the undoped material. We obtain a complete set of equations for the superconducting state. We show that fermion pairing in impurity bands of extended states is possible, and thus so is superconductivity, if localized spin-0 bosons are produced. The latter are necessarily accompanied by localized spin-1 bosons, which are responsible for the relationship between singlet and triplet pairing channels of quasiparticles. Zh. éksp. Teor. Fiz. 114, 1765–1784 (November 1998)  相似文献   

17.
18.
The upper critical field is determined for an even-parity singlet pairing state in the presence of arbitrary spin-orbit scattering. Comparison with critical field experiments suggests that superconductivity in CeCu2Si2 is a singlet pairing state, and in UBe13 is either a triplet pairing state or is a singlet state with restrictive conditions that the pair orbital be nearly isotropic and that strong spin-orbit scattering increase strongly as the field increases.  相似文献   

19.
20.
Ferromagnetism and superconductivity are generally considered to be antagonistic phenomena in condensed matter physics. Here, we theoretically study the interplay between the ferromagnetic and superconducting orders in a recent discovered monolayered CoSb superconductor with an orthorhombic symmetry and net magnetization, and demonstrate the pairing symmetry of CoSb as a candidate of non-unitary superconductor with time-reversal symmetry breaking. By performing the group theory analysis and the first-principles calculations, the superconducting order parameter is suggested to be a triplet pairing with the irreducible representation of 3B2u, which displays intriguing nodal points and non-zero periodic modulation of Cooper pair spin polarization on the Fermi surface topologies. These findings not only provide a significant theoretical insight into the coexistence of superconductivity and ferromagnetism, but also reveal the exotic spin polarized Cooper pairing driven by ferromagnetic spin fluctuations in a triplet superconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号