首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resistance of a La1.2Sr1.8Mn2(1–z)O7 single crystal has been studied in magnetic fields from 0 to 90 kOe. The magnetoresistance at temperature T = 75 K, near which a colossal magnetoresistance maximum is observed, has been successfully described in terms of the “spin–polaron” electric conduction mechanism. This value of the colossal magnetoresistance is due to a three-fold increase in the polaron size. The method of separating contributions of various conduction mechanisms to the magnetoresistance developed for materials with activation type of conduction is generalized to compounds in which a metal–insulator transition is observed. It is found that, at a temperature of 75 K, the contribution of the “orientation” mechanism is maximum (≈20%) in a magnetic field of 5 kOe and almost disappears in fields higher than 50 kOe.  相似文献   

2.
研究了Nd0.5Ca0.5MnO3体系的结构和输运特性. 结构 分析表明,在300K下,体系表现为O′型正交结构并存在典型的Jahn-Teller畸变.在8 T磁场 下,体系出现顺磁绝缘-铁磁金属的转变,庞磁电阻效应发生. 磁测量发现,样品的奈尔温 度TN和电荷有序转变温度TCO分别在150和240K左右,在41K左右出 现典型再入型自旋玻璃行为,同时观察到了负的磁化率异常. 结果表明,Nd关键词: 庞磁电阻 自旋玻璃态 负磁化强度 电荷有序  相似文献   

3.
The temperature dependence of the electronic and atomic structure of the colossal magnetoresistive oxides La1-xSrxMnO3 (x=0.3, 0.4) has been studied using core and valence level photoemission, x-ray absorption and emission, and extended x-ray absorption fine structure spectroscopy. A dramatic and reversible change of the electronic structure is observed on crossing the Curie temperature, including charge localization on and spin-moment increase of Mn, together with Jahn-Teller distortions, both signatures of polaron formation. Our data are also consistent with a phase-separation scenario.  相似文献   

4.
The temperature dependences of the velocities of transverse and longitudinal hypersound in lanthanum strontium manganites of the composition La1−x Sr x MnO3 (x = 0.125, 0.150, 0.175) have been measured at frequencies of 0.5–0.7 GHz. The structural phase transitions have been revealed, and their positions have been confirmed by data on the electrical resistance and magnetic measurements performed using the same samples. The results obtained have been analyzed in the framework of the model of competing Jahn-Teller distortions and magnetic ordering. The anomalies observed in the behavior of the velocities of longitudinal hypersound have been attributed to the local Jahn-Teller distortions, and their suppression due to the magnetic ordering has been considered a possible factor responsible for the colossal magnetoresistance.  相似文献   

5.
A transition of the field dependence of the electrical resistivity from a square law (∼H 2) above T c to a linear function (∼H) below T c is observed in the degenerate ferromagnetic semiconductor HgCr2Se4(n). Together with the large negative magnetoresistance, these magnetoelectric effects correspond to effects observed in the perovskite-type oxides La1−x Ca x MnO δ . Inasmuch as the undoped semiconductor HgCr2Se4 is a ferromagnet with approximately the same critical temperature as the doped semiconductor and in view of the total lack of data on the Jahn-Teller effect in this compound, we infer that our results cast doubt on existing hypotheses (polaron and binary exchange) regarding the origin of the giant magnetoresistance in La1−x Ca x MnO δ . Impurity sd scattering is discussed as a possible magnetoresistance mechanism for both compounds. Fiz. Tverd. Tela (St. Petersburg) 41, 1800–1803 (October 1999)  相似文献   

6.
The electrical properties of and the magnetoresistive effect in RCu3Mn4O12 (R=rare-earth ion or Th) are studied. In all compounds of this series, the magnetoresistive effect amounts to 20% at liquid nitrogen temperature in the presence of a field of 0.9 T. An increase in the magnetoresistance with decreasing temperature and a high sensitivity to weak magnetic fields at low temperatures point to the intergranular nature of the effect. The magnetoresistance shows a peak in the vicinity of the Curie temperature TC. Based on the dependences of the magnetoresistance on an external magnetic field, it is assumed that the magnetoresistance peak near TC is related to the charge carrier scattering by magnetic inhomogeneities as in substituted orthomanganites. We believe that the magnetoresistance value near the magnetic ordering temperature depends on the synthesis conditions and the effect of the intergranular spacer on the transport properties of these compounds.  相似文献   

7.
This paper obtains the room temperature ferromagnetism in Sn1 xFexO2 films fabricated by the Sol-Gel method.X-ray diffraction results show that Fe doping inhibits the growth of SnO2 and Fe3+ ions occupy the Sn sites.The measurement of resistance excludes the free carrier inducing ferromagnetism.Moreover,the temperature dependence of magnetization has been better fitted by the Curie-Weiss law and bound magnetic polaron(BMP) theory.An enhancement of ferromagnetism is achieved by annealing the samples with x = 7.1% in H2,and a decrease of oxygen flow rate.All these results prove that the BMP model depending on defects can explain ferromagnetism in diluted magnetic oxides.  相似文献   

8.
We report the structural, magentoresistance and electro-magnetic properties of ferromagnet–ferroelectric–type (1−x)La0.7Sr0.3MnO3/xBaTiO3 (with x=0.0%, 3.0%, 6.0%, 12%, 15.0% and 18.0%, in wt%) composites fabricated through a solid-state reaction method combined with a high energy milling method. The insulator–metal transition temperature shifts to a lower temperature and resistivity increases while the feromagnetic–paramagnetic transition temperature remains almost unchanged with the increase of BaTiO3 content. Magnetoresistance of the composites at an applied magnetic field H=3 kOe is enhanced in the wide temperature ranges with the introduction of BaTiO3, which could be explained by the enhanced spin polarized tunneling effect induced by the introduction of BaTiO3. The low-field magnetoresistance of the composite is analyzed in the light of a phenomenological model based on the spin polarized tunneling at the grain boundaries. Furthermore, the temperature dependence of resistivity for this series has been best-fitted by using the adiabatic small polaron and variable range hopping models. These models may be used to explain effect of BTO on the electronic transport properties on high temperature paramagnetic insulating region.  相似文献   

9.
Magnetoresistive La0.67−yYyBa0.33MnO3/LaAlO3 thin films were prepared by the sol-gel spin-coating method. Our resistivity and the electron spin resonance (ESR) measurements indicate that the main factor determining the metal-insulator transition temperature Tm is the cation disorder represented by the cation radii variance σ2, and that ferromagnetic insulating regions coexist in the ferromagnetic metallic phase. In the paramagnetic phase, the dissociation energy of spin clusters and the polaron hopping energy obtained from the ESR intensity and linewidth also displayed a prominent dependence on σ2. Polaron localization due to Jahn-Teller distortions appears to be responsible simultaneously for the decrease in the ferromagnetic order and for the increase in the orbital order.  相似文献   

10.
The resistivity, magnetoresistance, thermopower, and magnetic susceptibility of La1?xAxMnO3(A≡Ca,Sr;x=0.07–0.1) single crystals are investigated in the temperature range from 77 to 400 K. Sharp changes in the properties (the resistivity activation energy ΔEρ, its temperature coefficient γ, the thermopower activation energy ΔE S , the magnetoresistance, and the appearance of spontaneous magnetization) of these crystals occur near a temperature of 275±25 K, which is approximately twice as high as their Curie point TC and approximately half of the structural transition temperature. The results are explained by the phase separation: the formation of ferromagnetic clusters. The phase separation occurs through the coalescence of small-radius unsaturated magnetic polarons, in which only two or three magnetic moments of Mn are polarized, into a large-radius ferromagnetic polaron (a cluster about 10–12 Å in size) with several charge carriers. As a result, the short-range order occurs in the cluster at a temperature of about 275 K, which is close to T C of conducting doped manganites. The results of the experimental studies of the resistivity and the magnetoresistance as functions of temperature and magnetic field and the estimates agree well with the cluster model.  相似文献   

11.
《Physics letters. A》1997,224(6):379-382
The transport properties of manganese-oxides are studied using the spin correlation fluctuation scattering mechanism. It is shown that the Hall resistivity in a small magnetic field exhibits a maximum near the Curie point, and a strong field shifts the peak position to high temperature and suppresses the peak value; the dependence of the Hall resistivity on the magnetic field above Tc and below Tc is different. These results agree with the experimental curves qualitatively, but disagree quantitatively, which indicates that the spin correlation fluctuation scattering might not be the dominant mechanism of the colossal magnetoresistance. The double polaron mechanism due to strong electron-phonon and electron-spin coupling is proposed to be responsible for the colossal magnetoresistance in manganese-oxides.  相似文献   

12.
The crystal structure and magnetic properties have been determined for a new series of compounds of the form Rh2TSn. For T = Mn, Ni, or Cu, the room temperature structure is the fully ordered cubic Heusler structure. For T = V, Cr, Fe, or Co, a new structure is observed which is an exceptionally large tetragonal distortion of the Heusler structure (c/a = 1.18?1.27). The appearance of this tetragonal distortion is attributed to an electronic instability of the band Jahn-Teller type.  相似文献   

13.
王建元  翟薇  金克新  陈长乐 《中国物理 B》2011,20(9):97202-097202
The transport properties and magnetoresistance of electron-doped manganate / insulator composites (La0.8Te0.2MnO3)1 - x/(ZrO2)x (x=0, 0.3, and 0.5) are investigated. It is found that the metal-insulator transition temperature of this system shifts to a lower value as the ZrO2 content increases. The introduction of ZrO2 enhances both the domain scattering and electron relative scattering in the metal transport region. In the adiabatic small polaron hopping transport region, the thermal activation energy seems invariable regardless of the ZrO2 content. The application of a magnetic field promotes the charge transportation capabilities of the composites, and the magnetoresistance is enhanced with an increase of the ZrO2 content. This could be attributed to the more remarkable modification effect of magnetic field on ordering degree in the composites than in pure La0.8Te0.2MnO3.  相似文献   

14.
The magnetic, electrical, and optical properties of Ca1 − x Ce x MnO3 (x≤0.12) manganite single crystals are investigated with the aim of revealing the specific features of the multiphase electronic and magnetic state as a function of the cerium concentration and the atmosphere used for growing single crystals. It is found that the concentration dependence of the low-temperature magnetization M(x) of the single crystals is shifted toward the high-concentration range as compared to the corresponding dependence of the polycrystals, which is explained by the predominant cation deficiency. The electrical resistivity and the reflection spectra of the single crystals in the infrared spectral range indicate that charge carriers exhibit a band nature at temperatures close to room temperature. The temperature dependence of the electrical resistivity of the single crystal with x = 0.08, which has the maximum magnetization in the studied series of Ca1 − x Ce x MnO3 compounds, unlike polycrystals, exhibits a metallic behavior over the entire temperature range. The G-type antiferromagnetic phase with the Néel and Curie temperatures T N(G) = T C = 100 K is characterized by maxima of the electrical resistivity ρ and the magnetoresistance Δρ/ρ = |(ρ0 − ρ H )/ρ0| = 38% in the magnetic field H = 90 kOe. The magnetoresistance Δρ/ρ of the single crystals at cerium concentrations x = 0.10 and 0.12 with variations in temperature exhibit three specific features: near the temperature of charge ordering T co, near the temperature of the magnetic phase transition to the C-type antiferromagnetic phase T N(C), and near the temperature of the phase transition to the magnetic charge-ordered phase T N(MCO). An anomalous temperature dependence of the magnetization is revealed for a single crystal with x = 0.10 grown in oxygen at a pressure of 5 atm, which is explained by the presence of regions with hole conductivity due to cation deficiency. The inhomogeneous electronic and magnetic state is associated with the interrelation of the charge, orbital, and spin orderings. Original Russian Text ? N.N. Loshkareva, A.V. Korolev, N.I. Solin, E.V. Mostovshchikova, S.V. Naumov, N.V. Kostromitina, A.M. Balbashov, 2009, published in Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 1, pp. 98–107.  相似文献   

15.
In this paper we report a new method to fabricate nanostructured films, La0.67Ca0.33MnO3 (LCMO) nanostructured films have been fabricated by using pulsed electron beam deposition (PED) on anodized aluminium oxide (AAO) membranes, The magnetic and electronic transport properties are investigated by using the Quantum Design physics properties measurement system (PPMS) and magnetic properties measurement system (MPMS). The resistance peak temperature (Tp) is about 85 K and the Curie temperature (To) is about 250 K for the LCMO film on an AAO membrane with a pore diameter of 20nm. Large magnetoresistance ratio (MR) is observed near Tp. The MR is as high as 85% under 1 T magnetic field. The great enhancement of MR at low magnetic fields could be attributed to the lattice distortion and the grain boundary that are induced by the nanopores on the AAO membrane.  相似文献   

16.
The crystal structure and the magnetic and electric properties of La0.70Ba0.30MnO3 ? γ manganite (0≤γ≤0.30) with a perovskite structure were studied experimentally depending on the concentration of oxygen vacancies. The stoichiometric La0.70Ba0.30MnO3 compound (γ = 0) had cubic unit cell symmetry, which did not change as oxygen deficiency increased up to γ=0.30. A decrease in the content of oxygen in the compound under study caused the occurrence of several sequential magnetic phase transitions in the ground state, from the ferromagnetic state at γ=0 through the cluster spin glass state (γ=0.15) to the antiferromagnetic state (γ=0.30) with the presence of a small ferromagnetic component. The specific electric resistance grew to become activation in character at γ=0.11, and the metal-semiconductor transition disappeared as oxygen deficiency increased. The magnetoresistance of anion-deficient compositions included (1) magnetoresistance close to the temperature of the transition to the magnetically ordered state and (2) low-temperature magnetoresistance. The magnetoresistance peak at TC disappeared as γ increased (γ=0.11), whereas the low-temperature magnetoresistance component first increased to attain a maximum of about 34% at γ=0.15 and then decreased. The results of experimental studies were used to construct a magnetic phase diagram. These results could be interpreted within the framework of superexchange magnetic ordering theory. The suggestion was made that Mn3+-O-Mn3+ indirect exchange interactions were positive in the orbitally disordered phase only when manganese was in octahedral coordination, whereas these interactions became negative if at least one of the Mn3+ ions was five-coordinate or had a smaller coordination number.  相似文献   

17.
In studying the specular reflection IR spectra of manganite polycrystals with electron doping Ca1?x La x MnO3 (0 ≤ x ≤ 0.050) at room temperature, a crossover from polaron to band conduction is observed at x = 0.030. It has been shown that the observed changes in the electronic subsystem is associated with the crossover in the behavior of the magnetization and magnetoresistance in the magnetically ordered and paramagnetic phases that occurs at the same concentration and is described in [C. Chiorescu et al., Phys. Rev. B 73, 014406 (2006)].  相似文献   

18.
The dependence of longitudinal magnetoresistance on magnetic field in semiconductors containing magnetic impurities is investigated theoretically. The calculation takes into account the scattering of electrons on magnetic impurities and on optical phonons. The inelastic optical phonon scattering itself is responsible for magnetophonon oscillations of the magnetoresistance, the extremes of these oscillations occuring when energy distance between Landau levels is equal to the energy of optical phonon, h?ω0. The scattering on magnetic impurities may lead to spin flip electronic transitions. The spin flip electronic transitions manifest themselves as additional minima on the oscillatory picture of magnetoresistance. These new minima occur when the energy separation between spin-split Landau levels is equal to h?ω0.  相似文献   

19.
用含超软赝势平面波方法的广义梯度近似第一性原理对Ce掺杂SrMnO3的电子结构和磁性进行了相关研究. 不同的Mn-O键长说明MnO6八面体发生了强的Jahn-Teller扭曲, 并伴随着晶体构型由立方体(Pm3m)转变为四方晶系(I4/mcm), 同时,Jahn-Teller扭曲也稳定了C型反铁磁基态构型. 电子结构结果表明SrMnO3和Sr1-xCexMnO3(x=0.12  相似文献   

20.
陈慧余  宫小玉 《物理学报》1987,36(10):1281-1288
在室温下磁场在0—15kOe范围内测量了非晶态磁性合金(Fe1-xCox)82Cu0.4Si4.4B13.2的横向磁阻△ρ/ρ。发现在高磁场下,磁阻与磁场强度有三种函数关系:(1)磁阻趋于饱和;(2)磁阻随磁场平方正比地增加;(3)对x=0.15的合金,在特殊的电流、磁场方向和确定的磁场强度下,有磁阻尖峰出现。情况(3)是一种磁击穿现象。磁击穿发生在自旋向上和向下的两片Fer 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号