首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is the lead bioreductive drug in clinical trials as an anticancer agent to kill refractory hypoxic cells of solid tumors. It has long been known that, upon metabolic one-electron reduction, tirapazamine induces lethal DNA double strand breaks in hypoxic cells. These strand breaks arise from radical damage to the ribose moiety of DNA, and in this pulse radiolysis and product analysis study we examine mechanistic aspects of the dual function of tirapazamine and analogues in producing radicals of sufficient power to oxidize 2-deoxyribose to form radicals, as well as the ability of the compounds to oxidize the resulting deoxyribose radicals to generate the strand breaks. Both the rate of oxidation of 2-deoxyribose and the radical yield increase with the one-electron reduction potentials of the putative benzotriazinyl radicals formed from the benzotriazine 1,4-dioxides. Subsequent oxidation of the 2-deoxyribose radicals by the benzotriazine 1,4-dioxides and 1-oxides proceeds through adduct formation followed by breakdown to form the radical anions of both species. The yield of the radical anions increases with increasing one-electron reduction potentials of the compounds. We have previously presented evidence that oxidizing benzotriazinyl radicals are formed following one-electron reduction of the benzotriazine 1,4-dioxides. The reactions reported in this work represent the kinetic basis of a short chain reaction leading to increased oxidation of 2-deoxyribose, a process which is dependent on the one-electron reduction potential of the benzotriazinyl radicals that are above a threshold value of ca. 1.24 V.  相似文献   

2.
Revealing the free radical mechanism by which the anticancer drug tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) induces hypoxia-selective cytotoxicity, is seen as a way forward to develop clinically useful bioreductive drugs against chemo- and radiation-resistant hypoxic tumor cells. Our previous studies point to the formation of an active benzotriazinyl radical following the one-electron reduction of tirapazamine and its elimination of water from the initial reduction intermediate, and have suggested that this species is a cytotoxin. In this paper we have used pulse radiolysis to measure the one-electron reduction potentials of the benzotriazinyl radicals E(B*,H(+)/B) of 30 analogues of tirapazamine as well as the one-electron reduction potentials of their two-electron reduced metabolites, benzotriazine 1-oxides E(B/B*-). The redox dependencies of the back-oxidation of the one-electron reduced benzotriazine 1,4-dioxides by oxygen, their radical prototropic properties and water elimination reactions were found to be tracked in the main by the one-electron reduction potentials of the benzotriazine 1,4-dioxides E(A/A*-). Multiple regression analysis of published aerobic and hypoxic clonogenic cytotoxicity data for the SCCVII murine tumor cell line with the physical chemistry parameters measured in this study, revealed that hypoxic cytotoxicity is dependent on E(B*, H(+)/B) thus providing strong evidence that the benzotriazinyl radicals are the active cytotoxic species in hypoxia, while aerobic cytotoxicity is dependent on E(B/B*-). It is concluded that maximizing the differential ratio between these two controlling parameters, in combination with necessary pharmacological aspects, will lead to more efficacious anticancer bioreductive drugs.  相似文献   

3.
The mechanism by which a benzotriazine 1,4-dioxide class of anticancer drugs produce oxidizing radicals following their one-electron reduction has been investigated using tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide, 1) and its 6-methoxy (6), 7-dimethylamino (7), and 8-methyl (8) analogues. By measuring the changes in absorption with pH, we found that the radical anions undergo protonation with radical pK(r) values of 6.19 +/- 0.05, 6.10 +/- 0.03, 6.45 +/- 0.04, and 6.60 +/- 0.04, respectively. The one-electron reduced species underwent a first-order reaction, with increased rate constants from 112 +/- 23 s(-)(1) for 1 to 777 +/- 12 s(-)(1)(6), 1120 +/- 29 s(-)(1) (7), and 825 +/- 89 s(-)(1) (8) at pH 7. No overall change in conductance was observed following the one-electron reduction of 6, and 8 at pH 4.5, consistent with the protonation of the radical anions, but a loss in conductance was seen for one-electron reduced 7 because of further protonation of the initially formed radical. This is assigned to the protonation of the dimethylamino group of the radical species, which has a pK(a) of 8.8 +/- 0.3. All conductance changes take place on a time-scale shorter than those of the above first-order reactions, which are not associated with the formation or loss of charged species. The absorption spectra present at the end of the unimolecular reactions were found to be similar to those formed immediately upon the one-electron oxidation of the respective substituted 3-amino-1,2,4-benzotriazine 1-oxides, and it is suggested that common benzotriazinyl radicals are formed by both routes. All these intermediate radicals underwent dismutation to produce final spectra matched by equal contributions of the parent compound and their respective substituted 3-amino-1,2,4-benzotriazine 1-oxides. By establishing redox equilibria between the intermediate radicals formed on the one-electron oxidation of the respective 3-amino-1,2,4-benzotriazine 1-oxides of the compounds and reference compounds, we found the one-electron reduction potential of the oxidizing radicals to range from 0.94 to 1.31 V. The benzotriazinyl radical of tirapazamine was found to oxidize dGMP and 2-deoxyribose with rate constants of (1.4 +/- 0.2) x 10(8) M(-)(1) s(-)(1) and (3.7 +/- 0.5) x 10(6) M(-)(1) s(-)(1), respectively.  相似文献   

4.
Tandem mass spectrometry methods were used to study the sites of protonation and for identification of 3-amino-1,2,4-benzotriazine 1,4-dioxide (1, tirapazamine), and its metabolites (3-amino-1,2,4-benzotriazine 1-oxide (3), 3-amino-1,2,4-benzotriazine 4-oxide (4), 3-amino-1,2,4-benzotriazine (5), and a related isomer 3-amino-1,2,4-benzotriazine 2-oxide (6). Fragmentation pathways of 3 and 5 indicated the 4-N-atom as the most likely site of protonation. Among the N-oxides studied, the 4-oxide (4) showed the highest degree of protonation at the oxygen atom. The differences in collision-induced dissociation of isomeric protonated 1-, 2- and 4-oxides allowed for their identification by LC/MS/MS. Gas phase and liquid phase protonation of tirapazamine occurred exclusively at the oxygen in the 4-position. A loss of OH radical from these ions (2(+)) resulted in ionized 3. Neutralization-reionization mass spectrometry (NR MS) experiments demonstrated the stability of the neutral analogue of protonated tirapazamine in the gas phase in the micro s time-frame. A significant portion of the neutral tirapazamine radicals (2) dissociated by loss of hydroxyl radical during the NR MS event, which indicates that previously proposed mechanisms for redox-activated DNA damage are reasonable. The activation energy for loss of hydroxyl radical from activated tirapazamine (2) was estimated to be approximately 14 kcal mol(-1). Stable neutral analogues of [3 + H](+) and [5 + H](+) ions were also generated in the course of NR MS experiments. Structures of these radicals were assigned to the molecules having an extra hydrogen atom at one of the ring N-atoms. Quantum chemical calculations of protonated 1, 3, 4 and 5 and the corresponding neutrals were performed to assist in the interpretation of experimental results and to help identify their structures.  相似文献   

5.
Hypoxia in tumors results in resistance to both chemotherapy and radiotherapy treatments but affords an environment in which hypoxia-activated prodrugs (HAP) are activated upon bioreduction to release targeted cytotoxins. The benzotriazine 1,4-di-N-oxide (BTO) HAP, tirapazamine (TPZ, 1), has undergone extensive clinical evaluation in combination with radiotherapy to assist in the killing of hypoxic tumor cells. Although compound 1 did not gain approval for clinical use, it has spurred on the development of other BTOs, such as the 3-alkyl analogue, SN30000, 2. There is general agreement that the cytotoxin(s) from BTOs arise from the one-electron reduced form of the compounds. Identifying the cytotoxic radicals, and whether they play a role in the selective killing of hypoxic tumor cells, is important for continued development of the BTO class of anticancer prodrugs. In this study, nitrone spin-traps, combined with electron spin resonance, give evidence for the formation of aryl radicals from compounds 1, 2 and 3-phenyl analogues, compounds 3 and 4, which form carbon C-centered radicals. In addition, high concentrations of DEPMPO (5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide) spin-trap the •OH radical. The combination of spin-traps with high concentrations of DMSO and methanol also give evidence for the involvement of strongly oxidizing radicals. The failure to spin-trap methyl radicals with PBN (N-tert-butylphenylnitrone) on the bioreduction of compound 2, in the presence of DMSO, implies that free •OH radicals are not released from the protonated radical anions of compound 2. The spin-trapping of •OH radicals by high concentrations of DEPMPO, and the radical species arising from DMSO and methanol give both direct and indirect evidence for the scavenging of •OH radicals that are involved in an intramolecular process. Hypoxia-selective cytotoxicity is not related to the formation of aryl radicals from the BTO compounds as they are associated with high aerobic cytotoxicity.  相似文献   

6.
Tirapazamine (1) is a promising antitumor agent that selectively causes DNA damage in hypoxic tumor cells, following one-electron bioreductive activation. Surprisingly, after more than 10 years of study, the products arising from bioreductive metabolism of tirapazamine have not been completely characterized. The two previously characterized metabolites are 3-amino-1,2,4-benzotriazine 1-oxide (3) and 3-amino-1,2,4-benzotriazine (5). In this work, 3-amino-1,2,4-benzotriazine 4-oxide (4) is identified for the first time as a product resulting from one-electron activation of the antitumor agent tirapazamine by the enzymes xanthine/xanthine oxidase and NADPH:cytochrome P450 oxidoreductase. As part of this work, the novel N-oxide (4) was unambiguously synthesized and characterized using NMR spectroscopy, UV-vis spectroscopy, LC/MS, and X-ray crystallography. Under conditions where the parent drug tirapazamine is enzymatically activated, the metabolite 4 is produced but readily undergoes further reduction to the benzotriazine (5). Thus, under circumstances where extensive reductive metabolism occurs, the yield of the 4-oxide (4) decreases. In contrast, the isomeric two-electron reduction product 3-amino-1,2,4-benzotriazine 1-oxide (3) does not readily undergo enzymatic reduction and, therefore, is found as a major bioreductive metabolite under all conditions. Finally, the ability of the 4-oxide metabolite (4) to participate in tirapazamine-mediated DNA damage is considered.  相似文献   

7.
The electroreduction of some 4-substituted 2-phenylquinoline 1-oxides in dimethylformamide with and without a protonating agent was studied by dc and ac phase selective polarography, cyclic voltammetry, controlled-potential coulometry, ESR and UV spectrometry.In an aprotic medium the 1-oxides studied exhibit three or four subsequent steps. In every case the first is a reversible one-electron transfer producing a stable anion radical characterized by the ESR spectra. Potential sweep voltammetry give evidence of a chemical reaction following the second electron transfer producing the corresponding free bases, which are also electroactive at the same potentials.In a protic medium two subsequent bi-electronic (or only one tetraelectronic step) can be observed, the corresponding free bases and then 1,4-dihydroquinolines (or directly 1,4-dihydroquinolines) being the final reduction products.According to the experimental evidence a multistep scheme is suggested in which the role played by the substituents in determining the electroreduction pattern is considered.  相似文献   

8.
Regions of low oxygen concentration (hypoxia) occur in both normal human physiology and under pathophysiological conditions. Fluorescent probes for the direct imaging of cellular hypoxia could be useful tools that complement radiochemical imaging and immunohistochemical staining methods. In this work, we set out to characterize the hypoxia-selective enzymatic metabolism of a simple nitroaryl probe, 6-nitroquinoline (1). We envisioned that this compound might undergo hypoxia-selective, bioreductive conversion to the fluorescent product, 6-aminoquinoline (2). The probe 1 was, indeed, converted to a fluorescent product selectively under hypoxic conditions by the one-electron reducing enzyme NADPH:cytochrome P450 reductase. However, inspection of the fluorescence spectrum and LC-MS analysis of the reaction mixture revealed that the expected product 2 was not formed. Rather, the 63-fold increase in fluorescence emission at 445 nm resulting from the hypoxic metabolism of 1 was due to formation of the azoxy-helicene product, pyrido[3,2-f]quinolino[6,5-c]cinnoline 3-oxide (4). The generation of 4 involves an unusual biaryl bond formation under reductive conditions. The mechanism of this process remains uncertain but could proceed via combination of a nitroaryl radical anion with a neutral nitrosoaryl radical, followed by tautomerization and intramolecular condensation between the resulting hydroxylamine and nitroso functional groups. Bioreductive metabolism of nitroaryl compounds represents a promising strategy for the selective delivery of cytotoxic agents and fluorescent markers to hypoxic tissue, but the results described here provide an important glimpse of the chemical complexity that can be associated with the enzymatic one-electron reduction of nitroaryl compounds.  相似文献   

9.
10.
Two new types of bis-benzimidazole derivatives containing thiol group have been prepared and characterized. The compounds contain sulfur with imidazole ring show promising biological activities such as antioxidant, anticancer, antimicrobial and etc. The aim of this study was synthesis of benzimidazole derivatives which not only show antioxidant activity but also protect DNA from oxidative damage. Antioxidant activities of the synthesized compounds were investigated with DPPH and hydrogen peroxide radical scavenging assays. DNA nicking assay was applied to establish activity of compounds to protect plasmid DNA from Fenton's reagent radicals. Both compounds had antioxidant activity, however, activity of dicationic analogue was greater than well-known antioxidant Vit C. IC50 values calculated according to DPPH method were 14.5 μM for dicationic analogue ( 2 ) and 57.5 μM for 1,2-bis(1-methyl-1H-benzo[d]imidazol-2-ylthio)ethane ( 1 ). In hydrogen peroxide scavenge assay IC50 values of compounds were 638.6 μg/mL for 1,2-bis(1-methyl-1H-benzo[d]imidazol-2-ylthio)ethane ( 1 ), 398.9 μg/mL for dicationic analogue ( 2 ). Furthermore, dicationic analogue promised an effective DNA protection due to its positive charge interacting with negatively charged DNA. Also the high solubility of the dicationic analogue in water due to its positive charge could provide a great advantage in biological applications.  相似文献   

11.
12.
Radicals resulting from one-electron reduction of (N-methylpyridinium-4-yl) methyl esters have been reported to yield (N-methylpyridinium-4-yl) methyl radical, or N-methyl-gamma-picoliniumyl for short, by heterolytic cleavage of carboxylate. This new reaction could provide the foundation for a new structural class of bioreductively activated, hypoxia-selective antitumor agents. N-methyl-gamma-picoliniumyl radicals are likely to damage DNA by way of H-abstraction and it is of paramount significance to assess their H-abstraction capabilities. In this context, the benzylic C-H homolyses were studied of toluene (T), gamma-picoline (P, 4-methylpyridine), and N-methyl-gamma-picolinium (1c, 1,4-dimethylpyridinium). With a view to providing capacity for DNA intercalation the properties also were examined of the annulated derivatives 2c (1,4-dimethylquinolinium), 3c (9,10-dimethylacridinium), and 4c (1,4-dimethylbenzo[g]quinolinium). The benzylic C-H homolyses were studied with density functional theory (DFT), perturbation theory (up to MP4SDTQ), and configuration interaction methods (QCISD(T), CCSD(T)). Although there are many similarities between the results obtained here with DFT and CI theory, a number of significant differences occur and these are shown to be caused by methodological differences in the spin density distributions of the radicals. The quality of the wave functions is established by demonstration of internal consistencies and with reference to a number of observable quantities. The analysis of spin polarization emphasizes the need for a clear distinction between "electron delocalization" and "spin delocalization" in annulated radicals. Aside from their relevance for the rational design of new antitumor drugs, the conceptional insights presented here also will inform the understanding of ferromagnetic materials, of spin-based signaling processes, and of spin topologies in metalloenzymes.  相似文献   

13.
The reaction of acyclic primary and secondary 1,2-hydroxylaminooximes with aliphatic, alkylaromatic, and alkylheteroaromatic 1,2-diketones, depending on the structure of the starting compounds and the reaction conditions, gives derivatives of pyrazine 1,4-dioxide, 2-acyl-1-hydroxy-3-imidazoline 3-oxide, or mixtures thereof. 2-Acyl-1-hydroxy-3-imidazoline 3-oxides have been converted to pyrazine 1,4-dioxides.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 331–338, March, 1986.  相似文献   

14.
Density functional theory methods are employed to investigate experimentally proposed mechanisms by which the antitumor drug tirapazamine may react with a DNA sugar-C(1)' radical to give the sugar derivative deoxyribonolactone, with concomitant DNA strand breakage. For the previously proposed minor pathway, ionization of the sugar-C(1)' radical by tirapazamine, the calculated ionization energy, and the electron affinity of the models of the sugar-C(1)' radical of DNA and tirapazamine suggest that tirapazamine must be protonated to be able to oxidize the sugar-C(1)' radical. The preferred mechanism for reaction of tirapazamine with a sugar-C(1)' radical, in agreement with experimental observations, is found to proceed by direct attack of an N-oxide oxygen of tirapazamine at the sugar-C(1)' position, followed by homolytic cleavage of the N-O bond of the drug moiety. Possible alternative mechanisms are also investigated.  相似文献   

15.
Conclusions We used the keto-enol tautomerism of 4-carbomethoxyacetyl-3-imidazolines and 4-carbomethoxyacetyl-3-imidazoline 3-oxides and showed that in contrast to the radicals in the 3-imidazoline series, in the radicals of 3-imidazoline 3-oxide series, the spin effect of the radical center on the position of the tautomeric equilibrium is observed.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 653–658, March, 1985.  相似文献   

16.
A series of 3-aryl-2H-benzo[1,4]oxazin-4-oxides was prepared, and their ability to trap free radicals was investigated by EPR spectroscopy. In organic solvents, these compounds were able to efficiently scavenge all carbon- and oxygen-centered radicals tested, giving very persistent aminoxyls, except with superoxide anion whose spin adducts were unstable. The main feature of these nitrones as spin traps lies in the possibility to recognize the initial radical trapped. In fact, besides a g-factor and aminoxyl nitrogen EPR coupling constant dependence on the species trapped, the EPR spectra also show different patterns due to hyperfine splittings characteristic of the radical scavenged. This last important feature was investigated by means of density functional theory calculations.  相似文献   

17.
A series of 2-hydroxypyrazine 1-oxides were prepared from the corresponding chloropyrazines by two methods, including oxidation processes in satisfactory yields. The treatment of 2,3-diphenylpyrazine 1,4-dioxide ( 6 ) led to 2,3-dichloro-5,6-diphenylpyrazine ( 7 ) and 2-chloro-5,6-diphenylpyrazine 1-oxide ( 8 ), and the latter was converted to 5,6-diphenyl-2-hydroxypyrazine 1-oxide ( 9 ) by an alkaline hydrolysis.  相似文献   

18.
19.
Palladium-mediated coupling of 3-chloro-1,2,4-benzotriazine 1-oxide with a variety of stannanes in the presence of Pd(PPh3)4 gives 3-alkyl derivatives in good yields. Suzuki reaction of the 3-chloro compound with phenylboronic acids gives 3-aryl-1,2,4-benzotriazine 1-oxides. Oxidation of 1-oxides with trifluoroperacetic acid gives the 1,4-dioxides. This method provides a better route to the potential anti-cancer agents SR 4895 and SR 4941.  相似文献   

20.
Pulse radiolysis coupled with absorption detection has been employed to study one-electron oxidation of selenomethionine (SeM), selenocystine (SeCys), methyl selenocysteine (MeSeCys), and selenourea (SeU) in aqueous solutions. Hydroxyl radicals (*OH) in the pH range from 1 to 7 and specific one-electron oxidants Cl2*- (pH 1) and Br2*- (pH 7) have been used to carry out the oxidation reactions. The bimolecular rate constants for these reactions were reported to be in the range of 2 x 10(9) to 10 x 10(9) M(-1) s(-1). Reactions of oxidizing radicals with all these compounds produced selenium-centered radical cations. The structure and stability of the radical cation were found to depend mainly on the substituent and pH. SeM, at pH 7, produced a monomer radical cation (lambdamax approximately 380 nm), while at pH 1, a dimer radical cation was formed by the interaction between oxidized and parent SeM (lambdamax approximately 480 nm). Similarly, SeCys, at pH 7, on one-electron oxidation, produced a monomer radical cation (lambdamax approximately 460 nm), while at pH 1, the reaction produced a transient species with (lambdamax approximately 560 nm), which is also a monomer radical cation. MeSeCys on one-electron oxidation in the pH range from 1 to 7 produced monomer radical cations (lambdamax approximately 350 nm), while at pH < 0, the reaction produced dimer radical cations (lambdamax approximately 460 nm). SeU at all the pH ranges produced dimer radical cations (lambdamax approximately 410 nm). The association constants of the dimer radical cations of SeM, MeSeCys, and SeU were determined by following absorption changes at lambdamax as a function of concentration. From these studies it is concluded that formation of monomer and dimer radical cations mainly depends on the substitution, pH, and the heteroatoms like N and O. The availability of a lone pair on an N or O atom at the beta or gamma position results in monomer radical cations having intramolecular stabilization. When such a lone pair is not available, the monomer radical cation is converted into a dimer radical cation which acquires intermolecular stabilization by the other selenium atom. The pH dependency confirms the role of protonation on stabilization. The oxidation chemistry of these selenium compounds is compared with that of their sulfur analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号