首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱钧  赵燕  金国藩 《中国物理 B》2008,17(8):2979-2983
Fibre sensors exhibit a number of advantages over other sensors such as high sensitivity, electric insulation, corrosion resistance, interference rejection and so on. And laser self-mixing interference can accurately detect the phase difference of feedback light. In this paper, a novel laser self-mixing interference fibre sensor that combines the advantages of fibre sensors with those of laser self-mixing interference is presented. Experimental configurations are set up to study the relationship between laser power output and phase of laser feedback light when the fibre trembles or when the fibre is stretched or pressed. The theoretical analysis of pressure sensors based on laser self-mixing interference is indicated to accord with the experimental results.  相似文献   

2.
The characteristics of intensity tuning and polarization of He-Ne laser with optical feedback are studied. When the internal cavity length of the laser with birefringence optical feedback is tuned, not only does output intensity vary with laser frequency, but also the polarization periodically hops between two orthogonal directions. If the phase difference of birefringence is π/2, two polarization states Mternately oscillate and have equal bandwidths within the longitudinal mode spacing. The times of polarization flipping in the longitudinal mode bandwidth is proportional to the ratio of external cavity length to internal cavity length. The experimental results are explained, and the potential uses are also discussed.  相似文献   

3.
任成  谈宜东  张书练 《中国物理 B》2010,19(2):24206-024206
This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.  相似文献   

4.
A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.  相似文献   

5.
Laser Feedback Technique for Precise Retardation Measurements   总被引:1,自引:0,他引:1       下载免费PDF全文
费立刚  张书练 《中国物理快报》2006,23(11):2974-2977
A simple and precise retardation measurement based on laser feedback is demonstrated. The measurement principle is based on polarization flipping induced by optical feedback from an external birefringence cavity. The measured wave plate is located in the external cavity. When the length of the external cavity is tuned, the polarization states of laser will flip between two eigenstates, and the position of polarization flipping in one period of intensity modulation will vary with retardation of the wave plate. The duty ratio of two eigenstates is used to determine the retardation. Main advantages of the technique are that it is compact, low cost, fast and flexible. Especially, it is insensitive to a fluctuation of laser intensity and is suitable for on-line measurement. The experimental results have shown that the measurement uncertainty is better than 0.03° in the range 30°-150°.  相似文献   

6.
A method is proposed to solve the problem of direction discrimination for laser feedback interferometers.By vibrating the feedback mirror with a small-amplitude and high-frequency sine wave,laser intensity is modulated accordingly.The modulation amplitude can be extracted using a phase sensitive detector(PSD).When the feedback mirror moves,the PSD output shows a quasi-sine waveform similar to a laser intensity interference fringe but with a phase difference of approximately ±π/2.If the movement direction of the feedback mirror changes,the phase difference sign reverses.Therefore,the laser feedback interferometer offers a potential application in displacement measurement with a resolution of 1/8 wavelength and in-time direction discrimination.Without using optical components such as polarization beam splitters and wave plates,the interferometer is very simple,easy to align,and less costly.  相似文献   

7.
An alternative technique for infrasound detection based on the self-mixing (SM) interference of a laser diode is described. The principle involved is the dependence of the power emitted by the laser diode on infrasound-induced membrane vibration. The Fourier transform and fringe-counting methods are used to analyze the self-mixing signal. Infrasound signals are experimentally measured from 2 to 20 Hz with a resolution of 0.25, and the results well agree with the theoretical ones.  相似文献   

8.
Displacement sensor based on the polarization mixture and the cavity tuning of the orthogonal polarized He-Ne laser 1.15μm is presented.The power tuning curves of He-Ne laser are irregular,and it is difficult to measure the change in cavity length.The distortion of the curves is caused by the higher relative excitation compared with the He-Ne laser at 633 nm.In view of its potential for the wider displacement measuring range,a new method of displacement sensing is developed.Experiments show that displacement measuring stability based on the method of the polarization mixture is better than that of the power tuning curves. The displacement sensor achieves the measuring range of 100 mm,resolution of 144 nm,and linearity of 7×10-6 .  相似文献   

9.
We experimentally demonstrate the coherent combining of two tunable erbium-doped fiber lasers by using a single-mode fiber feedback loop configuration. A single-mode fiber is arranged in the feedback loop to filter the far-field pattern, and the energy of desired in-phase mode is collected and injected into the resonators of two component fiber lasers. The coherently combined laser is tunable over a wide spectrum ranging from 1536 to 1569 nm, which means that the combining scheme is compatible with wavelength tuning. The effects and necessity of whether adopting polarization controlling measures or not in component lasers are investigated in detail. The results indicate that adding polarization controlling can improve the array's coherence, whereas it will decrease the output power and efficiency simultaneously.  相似文献   

10.
The influence of feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power ratio, different feedback levels are obtained. Three distinct regimes of polarized optical feedback effects are found and defined as regimes Ⅰ, Ⅱ and Ⅲ The feedback level boundaries among the regimes are acquired experimentally. The theoretical analysis is presented to be in good agreement with the experimental results.  相似文献   

11.
Self-mixing interferometry (SMI) based on nanometer fringes and polarization flipping is realized. The interferometer comprises a single-mode He-Ne laser and a high-amplitude reflectivity feedback mirror. The nanometer fringes are obtained by tilting the external feedback mirror. The fringe density is 35 times higher than that derived with conventional two-beam interference, and each fringe corresponds to a λ/70 displacement in external cavity length. Moreover, polarization flipping occurs when the external feedback mirror moves in the opposite direction. Such movement can be used to easily distinguish displacement direction. Experimental results show an optical resolution of displacement measurement of 9.04 nm with a range of 100 μm. The proposed SMI presents promising application prospects in precisely measuring displacement and calibrating other micro-displacement sensors because of its optical wavelength traceability.  相似文献   

12.
A piece-wise transition detection algorithm that performs displacement measurements for self-mixing sen- sors is developed. The algorithm can correctly detect self-mixing fringes at a low signal-to-noise ratio in the presence of disturbances without filtering. Displacement reconstructions by the phase unwrapping method based on this algorithm are experimentally validated, with laser subject to the moderate feedback regime.  相似文献   

13.
刘刚  张书练  李岩  朱钧 《中国物理》2004,13(6):855-859
Strong modes competition makes only one of o-light and e-light oscillate in a birefringent dual-frequency laser when the angle between the crystalline axis and the laser beam is nearly zero. When the oscillated mode is in a different part of the gain curve, the detected intensity curves of o-light and e-light are quite different in the existence of optical feedback. The curves are divided into five cases. Three cases of the experimental results can be used for direction discrimination. The polarization characteristics of the birefringent cavity He-Ne laser are also discussed without optical feedback.  相似文献   

14.
External anisotropic feedback effects on the phase difference behaviour of output intensities in a microchip Nd:YAG laser are presented. By rotating a quarter wave plate placed in the external cavity, the angle between laser initial polarization direction and o-axis of the wave plate is tuned from -45°to 45°, which results in variable extra-cavity birefringence along two orthogonal detection directions. With only one optical path and one wave plate, laser intensities of the two orthogonal directions, both modulated by the external cavity length, are output with a tunable phase difference, which can be continuously changed from zero to twice as large as that of the waveplate. Experimental results as well as a theoretical analysis based on Fabry-Perot cavity equivalent model and the refractive index ellipsoid, are presented. The potential applications of this phenomenon are also discussed.  相似文献   

15.
We demonstrate a linearly-polarized, ytterbium-doped fiber laser that uses an uncoated, undoped ceramic YAG plate as the output coupler, and the corresponding polarization extinction ratio of laser beam increases with incident pump power and then saturates at larger pump power. For comparison, the output coupler of the fiber laser is replaced by 10% reflectivity plane mirror, while the feature of the polarization of laser output is kept unchanged. The results show that the origin of the pump-dependent and self-started polarization is associated with the intensity-dependent nonlinear birefringence in the gain fiber.  相似文献   

16.
A novel distributed feedback(DFB) fiber laser sensor, which can measure acoustic and magnetic fields simultaneously, is proposed. The magnetic field can be measured by detecting the change of resonant frequency of the fiber laser, and the acoustic pressure can be measured by detecting the phase shift of the fiber laser. Both of the signals can be simultaneously demodulated in the frequency domain without affecting each other. Experimental studies show that the acoustic pressure sensitivity of this sensor is about-130 d B(0 dB re 1 pm∕μPa) and the sensor has a good linearity with a magnetic field sensitivity of 0.57 Hz∕m T.  相似文献   

17.
高阳  董海峰  王翔  王笑菲  尹凌霄 《中国物理 B》2017,26(6):67801-067801
One of the peculiar phenomenons in non-zero magnetic resonance magnetometer is that, with the increase of the temperature, the magnetic resonance linewidth is narrowed at first instead of broadened due to the increasing collision rate. The magnetometer usually operates at the narrowest linewidth temperature to obtain the best sensitivity. Here, we explain this phenomenon quantitatively considering the nonlinear of the optical pumping in the cell and did experiments to verify this explanation. The magnetic resonance linewidth is measured using one amplitude-modulated pump laser and one continuous probe laser. The field is along the direction orthogonal to the plane of pump and probe beams. We change the temperature from 53℃ to 93℃ and the pumping light from 0.1 mW to 2 mW. The experimental results agree well with the theoretical calculations.  相似文献   

18.
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non- cooperative targets. Experimental results show that PLFI has an accuracy of 8" within a range of 1400". The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.  相似文献   

19.
任成  谈宜东  张书练 《中国物理 B》2009,18(8):3438-3443
External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringence element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry--Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.  相似文献   

20.
A short distributed feedback fiber laser with a nearly unidirectional output is fabricated and tested. The short fiber laser is made of a polarization-dependent phase-shift grating fabricated with a vertically polarized 244-nm ultraviolet (UV) laser. A single ∏ phase-shift is introduced to a 2-cm grating at a specified position by directly moving the phase mask during UV beam scanning. Test results show that the laser has a single polarization longitudinal mode with 2.6-mW pump threshold. The backward-to-forward output power ratio is approximately 30:1. The relative intensity noise is -88 dB/Hz, and the linewidth is approximately 10 kHz at 75-mW 980-nm pumping. The unidirectional output and short dimension of this short fiber laser make it very useful in sensing applications, especially in multiplexed sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号