首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mahajan RK  Kaur I  Lobana TS 《Talanta》2003,59(1):101-105
A new ion-selective PVC membrane electrode based on salicylaldehyde thiosemicarbazone as an ionophore is developed successfully as sensor for mercury(II) ions. The electrode shows excellent potentiometric response characteristics and displays a linear log[Hg2+] versus EMF response over a wide concentration range of 1.778×10−6-1.0×10−1 M with Nernstian slope of 29 mV per decade with the detection limit of 1.0×10−6 M. The response time of the electrode is less than 30 s and the membrane electrode operates well in the pH range of 1.0-3.0. The lifetime of the sensor is about 2 months. The electrode shows better selectivity towards Hg2+ ions in comparison with the alkali, alkaline and some heavy metal ions; most of these metal ions do not show significant interference (KPotHg,M values of the order of 10−3-10−4). The present sensor showed comparable or even better performance vis-à-vis similar PVC based ion-selective electrodes reported in literature. The sensor was also applied as an indicator electrode for potentiometric titration of Hg2+ions with I and Cr2O72−.  相似文献   

2.
De Marco R  Martizano J 《Talanta》2008,75(5):1234-1239
A bielectrode array comprising a jalpaite membrane (i.e., Ag1.5Cu0.5S) copper(II) ion-selective electrode (ISE) and chalcogenide glass membrane (i.e., Fe2.5(Se60Ge28Sb12)97.5) iron(III) ISE has been assembled by individually wiring each solid-state sensor into a single electrode body. Furthermore, a dual metal ion buffer calibration standard incorporating copper(II) and iron(III) coordinating ligands to regulate the levels of free copper(II) and iron(III) in the buffer has been developed to enable simultaneous calibration of the bielectrode ISE array. In this work, the bielectrode ISE array has been employed in the continuous flow analysis (CFA) of free copper(II) and iron(III) in seawater media. It is shown that the individual electrodes displayed Nernstian response in the metal ion buffer calibration standard over a wide dynamic range (viz., 10−15 to 10−5 M aCu2+ and 10−21 to 10−11 M aFe3+), and the results of repetitive CFA analyses of free copper(II) and iron(III) in seawater are commensurate with the typical values found in coastal seawater samples. Clearly, the bielectrode ISE array may be used in the simultaneous analysis of free copper(II) and iron(III) in seawater without fear of cross-interference between the solid-state sensors.  相似文献   

3.
De Marco R  Shackleton J 《Talanta》1999,49(2):385-391
It is shown that a chalcogenide glass mercury(II) ion-selective electrode (ISE) can be calibrated in chloride-free unbuffered and saline buffered standards, displaying near-Nernstian response over 19 orders of magnitude (i.e. 10(-20) to 10(-1) M Hg(2+)). Extended ageing of the ISE in seawater induced a memory effect, causing the electrode to respond in a sub-Nernstian fashion. Electrochemical impedance spectroscopy (EIS) demonstrated that the response of the Hg(II) ISE is underpinned by a charge transfer process, and seawater matrix effects are due to electrode passivation. It is shown that standard addition ISE potentiometry may compensate for interferences caused by the seawater matrix.  相似文献   

4.
A new PVC membrane mercury(II) ion electrode based on N,N-dimethylformamide-salicylacylhydrazone (DMFAS) as an ionophore is described, which shows excellent potentiometric response characteristics and displays a linear log[Hg(2+)] versus EMF response over a wide concentration range between 6.2 x 10(-7) and 8.0 x 10(-2) M with a Nerstian slope of 29.6 mV per decade and a detection limit of 5.0 x 10(-7) M. The response time for the electrode is less than 30 s and the electrode can be used for more than 2 months with less than a 2 mV observed divergence in a potentials. The proposed electrode exhibits very good selectivity for mercury(II) ions over many cations in a wide pH range (pH 1 - 4). The electrode was also applied to the determination of a mercury(II) ion in vegetables and in Azolla filiculoides.  相似文献   

5.
A liquid ion-exchange electrode containing a complex of mercury(II) with N-(O,O-diisopropylthiophosphoryl)thiobenzamide in carbon tetrachloride is described. The electrode shows excellent sensitivity and good selectivity. The slope of the calibration graph is 29.0 mV/pHg2+ in the pHg2+ in the pHg2+ range 2–15.2 in mercury(II) ion buffers. The electrode can be used for determination of 5 × 10?5–10?2 M Hg(II) in the presence of 10?2 M Cu(II), Ni(II), Co(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(III), Cr(III), Bi(III) or Al(III) ions and in the presence of 10?3 M Ag(I) ions. It can bealso used for end-point detection in titrations with EDTA of 10?3–10?4 M mercury(II) at pH 2.  相似文献   

6.
7.
A new all plastic sensor for Co2+ ions based on 2-amino-5 (hydroxynaphtyloazo-1′)-1,3,4 thiadiazole (ATIDAN) as ionophore was prepared. The electrode exhibits a low detection limit of 1.5 × 10−6 mol L−1 and almost theoretical Nernstian slope in the activity range 4.0 × 10−6–1 × 10−1 mol L−1 of cobalt ions. The response time of the sensor is less than 10 s and it can be used over a period of 6 months without any measurable divergence in potential. The proposed sensor shows a fairly good selectivity for Co(II) over other metal ions. The electrode was successfully applied for determination of Co2+ in real samples and as an indicator electrode in potentiometric titration of Co2+ ions with EDTA.   相似文献   

8.
Stünzi H 《Talanta》1982,29(1):75-76
The Orion copper(II) ion-selective electrode responds well to copper(II) ions in aqueous medium. However, in the presence of acetonitrile and copper(I) ions, it can behave as a copper(I) ion-selective electrode with Nernstian behaviour.  相似文献   

9.
Park SJ  Shon OJ  Rim JA  Lee JK  Kim JS  Nam H  Kim H 《Talanta》2001,55(2):297-304
Five novel 1,3-alternate calix[4]azacrown ethers having 2-picolyl, 3-picolyl, and benzyl unit on the nitrogen atom were synthesized and used as ionophores for transition metal-selective polymeric membrane electrodes. The electrode based on 2-picolyl armed 1,3-alternate calix [4] azacrown ether exhibited Nernstian response toward copper (II) ion over a concentration range (10(-4.5) M-10(-2.5) M). The detection limit was determined as 10(-5) M in pH 7 and the selectivity coefficients for possible interfering cations were evaluated. Anions in the sample solution strongly affected the electrode response.  相似文献   

10.
A potassium ion-selective electrode based on a cobalt(II)-hexacyanoferrate(III) (CHCF) film-modified glassy carbon electrode is proposed. The electroactive film is introduced onto the glassy carbon electrode surface by electrodeposition of cobalt, which forms a thin CHCF film on subsequent anodic scanning in KClHCl solution (pH 5.0–5.5) containing K3Fe(CN)6. The thickness of the film on the electrode surface can be controlled by changing the electrodeposition time and the concentrations of cobalt(II) and Fe(CN)3?6 ions. The modified electrode exhibits a linear response in the concentration range 1 × 10?1 ?3 × 10?5 M potassium ion activity, with a near-Nernstian slope (48–54 mV per decade) at 25 ± 1°C. The detection limit is 1 × 10?5 M. The stability, response time and selectivity were investigated. The electrode exhibits good selectivity for potassium ion with the twelve cations investigated. The relative standard deviation is 1.5% (n=10). The effects of the thickness of the electroactive film and the pH of the solution on the electrode response were also investigated.  相似文献   

11.
Ren K 《Talanta》1989,36(7):767-771
A new liquid-state ion-selective electrode based on a complex of Cu(II) with salicylaniline is described. The electrode shows linear dependence of potential on the activity of Cu(2+) in the range from 5 x 10(-6) to 0.1M, with a slope of 28.3 mV/pCu at 18 degrees . The electrode shows a better selectivity relative to Ag(I) and Hg(II) than other copper(II) ion-selective electrodes. The possibilities for using the electrode for determination of copper in the presence of interfering cations are described.  相似文献   

12.
The response of the Orion 94-29 CuII ion-selective electrode (ISE) [employing a jalpaite membrane] in seawater has been related to levels of free CuII yielding results for the Derwent River and San Diego Bay that are 2 to 3 orders of magnitude higher than those for the Pacific Ocean. Response data for the electrode in acidified seawater at pH 2 are internally consistent with total CuII levels determined using differential pulse anodic stripping voltammetry (DPASV) and graphite furnace atomic absorption spectrometry (GFAAS). It has been found that, even in acidified seawater, the organic ligands influence the response of the electrode, and this effect can be compensated successfully by either analyzing UV-photooxidized seawater and/or using a standard addition technique. The assigned ISE results for total CuII in acidified seawater fall within ± (0.1–0.5) pCu unit of values determined using GFAAS. Electrode drift in seawater can be minimized by using a polished electrode that has been conditioned in seawater for 24 h. The improved response rate of a conditioned ISE minimizes electrode soaking times and sample contamination through membrane corrosion.  相似文献   

13.
This paper presents a preliminary structural and interfacial study of the iron chalcogenide glass [i.e., Fex(Ge28Sb12Se60)100−x] ion-selective electrode (ISE) using small angle neutron scattering (SANS) and electrochemical impedance spectroscopy (EIS). SANS detected variations in the neutron scattering as a function of iron content in the chalcogenide glass. Furthermore, a change in the chalcogenide glass structure was observed at elevated iron dopant levels. Conversely, EIS was used to show that the iron chalcogenide membrane comprises various time constants, and the interfacial charge transfer reaction depends on the membrane iron content. Equivalent circuit modeling revealed that the charge transfer resistance decreases at elevated iron levels, and this may be related to the presence of iron defects in the glass. It is proposed that the iron chalcogenide membrane comprises an iron nanostructural network embedded in the amorphous matrix, and this directly influences the electrical conductivity and concomitant electrochemical reactivity of the glass.  相似文献   

14.
Three new calixarene Tl+ ionophores have been utilized in Tl+ ion-selective electrodes (ISEs) yielding Nernstian response in the concentration range of 10−2–10−6 M TlNO3 with a non-optimized filling solution in a conventional liquid contact ISE configuration. The complex formation constants (log βIL) for two of the calixarene derivatives with thallium(I) (i.e. 6.44 and 5.85) were measured using the sandwich membrane technique, with the other ionophore immeasurable due to eventual precipitation of the ionophore during these long-term experiments. Furthermore, the unbiased selectivity coefficients for these ionophores displayed excellent selectivity against Zn2+, Ca2+, Ba2+, Cu2+, Cd2+ and Al3+ with moderate selectivity against Pb2+, Li+, Na+, H+, K+, NH4+ and Cs+, noting that silver was the only significant interferent with these calixarene-based ionophores. When optimizing the filling solution in a liquid contact ISE, it was possible to achieve a lower limit of detection of approximately 8 nM according to the IUPAC definition. Last, the new ionophores were also evaluated in four solid-contact (SC) designs leading to Nernstian response, with the best response noted with a SC electrode utilizing a gold substrate, a poly(3-octylthiophene) (POT) ion-to-electron transducer and a poly(methyl methacrylate)–poly(decyl methacrylate) (PMMA–PDMA) co-polymer membrane. This electrode exhibited a slope of 58.4 mV decade−1 and a lower detection limit of 30.2 nM. Due to the presence of an undesirable water layer and/or leaching of redox mediator from the graphite redox buffered SC, a coated wire electrode on gold and graphite redox buffered SC yielded grossly inferior detection limits against the polypyrrole/PVC SC and POT/PMMA–PDMA SC ISEs that did not display signs of a water layer or leaching of SC ingredients into the membrane.  相似文献   

15.
Xin-Gui Li  Xiao-Li Ma 《Talanta》2009,78(2):498-140
A new polyvinylchloride membrane electrode was facilely prepared by using polyaminoanthraquinone (PAAQ) microparticles with an intrinsically electrical conductivity as a lead(II) ionophore. It is found that the electrode performance will significantly be improved with adding 1 wt% PAAQ microparticles and decreasing the membrane thickness. A 90 μm-thick membrane electrode consisting of PAAQ(salt):polyvinyl chloride:dioctylphthalate:sodium tetraphenylborate of 1:33:66:1 (wt) but without any traditional lead(II) ionophore achieved the optimal performance and exhibited a good Nernstian response for Pb(II) ions over a wide concentration range from 2.5 × 10−6 to 0.1 M with a slope of 28.9 mV/decade and a detection limit down to 776 nM. A reasonably short response time of 12 s was revealed together with a long lifetime over a period of around 4 months in a wide pH range between 2.8 and 5.2. A fixed interference method indicated that the electrode has an excellent selectivity for lead(II) ion over alkali, alkaline earth and other heavy metal ions. The proposed electrode has been also found to be a powerful indicator electrode for potentiometric titration of Pb(II) ions with EDTA. The electrode can be used to accurately monitor the Pb(II) pollution in environmental waters.  相似文献   

16.
Summary The potentiometric determination of mercury(II) and thiourea (TU) in strong acid solution (pH 0–1) by using an all-solid-state ion-selective electrode with (Ag2S 25%, AgI 25% and PTFE 50% m/m)-membrane is described. The linear response, 43 mV(pHg)–1 and 80 mV(pTU)–1, has been obtained in the concentration range from 10–2 to under 10–5 mol/l. By direct potentiometry at pH 0 mercury(II) can be determined in the presence of up to 10–3 mol/l of iron(III). The change in potential in the tested concentration range of thiourea indicates the formation of Ag(TU) 1.4 + at the exposed surface of the membrane. This stoichiometry is in good agreement with that calculated from the average Ag/TU ratio in the potentiometric titration. The investigated electrode can be used as a good sensor for mercury(II) and thiourea in strong acid media and a wide variety of practical analytical systems.  相似文献   

17.
Steger HF 《Talanta》1985,32(3):235-237
The titration of ethylenediaminetetra-acetic acid in fluoride medium with Cu(II) solution with the Orion Cu(II) ion-selective electrode as indicator, results (after several titrations) in a broad end-point which is unsatisfactory for exact analytical purposes. This effect has been found to arise from an enhanced rate of response to changes in EDTA concentration when the electrode has been exposed to an EDTA/NaF medium for prolonged periods.  相似文献   

18.
De Marco R  Pejcic B  Loan M  Wilcox M 《Talanta》2002,57(1):115-121
It is shown that the iron(III) chalcogenide glass membrane ion-selective electrode (ISE) can be calibrated in continuous flow analysis (CFA) using acidified iron(III) nitrate standards, yielding a 60+/-3 mV per decade change in activity of Fe(3+) response in the range 10(-7)-10(-2) M total iron(III). Extended ageing of the iron(III) ISE in 2 M zinc(II) sulphate did not alter the potentiometric response characteristics of the electrode. Furthermore, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy in the presence and absence of zinc(II) sulphate failed to detect a zinc(II) interference on the iron(III) ISE. CFA/ISE determined activities of Fe(3+) in synthetic zinc electrolyte containing 2x10(-3)-2x10(-1) M total iron(III) yielded results falling within +/-0.2logaFe(3+) unit of the corresponding iron speciation data calculated using the minteqa2 program.  相似文献   

19.
Crombie DJ  Moody GJ  Thomas JD 《Talanta》1974,21(10):1094-1098
The normal shiny surface of a copper(II) ion-selective electrode tarnishes when exposed to chloride ions. Polishing with fine emery cloth easily removes this dull surface layer and fully restores the proper potential response characteristics of the electrode. No such loss of character is evident with a non-chloride based reference electrode except in the presence of added chloride ions. The electrode also seems less affected in premixed solutions of copper(II) and chloride. the chloride ions then being largely bound as copper(II) chloro-complexes.  相似文献   

20.
The hydrolysis of micromolar solutions of copper(II) is dominated by the formation of a copper—hydroxy colloid, both in the presence and absence of atmospheric carbon dioxide. Presence of the colloid was inferred from the response of the copper ion-selective electrode and confirmed by light scattering measurements. The colloid is only slowly converted to thermodynamically more stable species, with the result that copper—carbonate complexes are not formed to any significant extent in solutions exposed to atmospheric carbon dioxide. However, copper—carbonate complexes are formed in solutions containing a constant amount of total carbonate. Speciation and complexation capacity measurements should be interpreted with caution because thermodynamic equilibrium may not be attained in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号