首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of I ions on the Cd(0001) single crystal plane from solutions in methanol has been investigated by impedance measurement method. The ionic charge due to the specific adsorption has been obtained using the mixed-electrolyte method for both electrode charge and electrode potential as the independent electrical variables. The Gibbs energy of adsorption of ions has been calculated using the different modifications of the virial adsorption isotherm. It was found that under comparable conditions, the results obtained at constant electrode potential and at constant electrode charge are coincident and the adsorption of I anion increases in the sequence of solvents: water < methanol, ethanol, and metals: Cd < Bi. The electrosorption valency has been calculated. It was found that on the Cd(0001) plane the electrosorption valency of I anions has a constant value that is similar for methanol and ethanol and also for these solvents on Bi single crystal planes.  相似文献   

2.
The adsorption of I? anions on the Bi(111) single-crystal plane from solutions in ethylene carbonate has been investigated by impedance measurement method. The ionic charge due to the specific adsorption has been obtained by integration of differential capacitance curves, and the Gibbs excess has been calculated using the mixed-electrolyte method applied for both electrode charge and electrode potential as the independent electrical variables. The Gibbs energy of I? anion adsorption has been calculated using the virial adsorption isotherm. It was found that under comparable conditions, the results obtained at constant electrode potential and at constant electrode charge were coincident. The Gibbs energy of I? anion adsorption and the calculated electrosorption valency value were found to be very close to these values obtained in propylene carbonate.  相似文献   

3.
Adsorption of Cl?, Br?, and I? (Hal?) ions from 0.1 M solutions in methanol (MeOH) is studied on the liquid renewable Ga, (In-Ga), and (Tl-Ga) electrodes by the methods of differential capacitance and jet electrode. It is shown that the adsorption parameters and the series of surface activity of halide ions in MeOH essentially depend on the metal nature. On the (In-Ga) and (Tl-Ga) electrodes, as well as on the Hg electrode, the surface activity of halide ions increases in the series: Cl? < Br? < I?; on the Ga electrode, it varies in another series: Br? < Cl? < I?. The data for the Ga/MeOH interface support the result, which was first obtained on the Ga/N-methyl formamide (N-MF) interface, that the effect of inversion of surface activity series can be observed not only in the aprotic solvents, but also in the protic solvents. The data, which were obtained in MeOH, are compared with the corresponding data, which were obtained in N-MF, dimethyl formamide (DMF), acetonitrile (AN), and water. For Ga, (In-Ga), and (Tl-Ga) electrodes, the adsorption of Hal? varies in the series: H2O < MeOH ≈ N-MF < DMF < AN. The data obtained in MeOH indicate that the energy of metal-Hal? interaction (ΔG M-Hal) increases in the series (Tl-Ga) < (In-Ga) < Ga as the electronic work function increases. This is in agreement with the data, which were obtained in other solvents, and is the evidence for the donor-acceptor nature of metal-Hal? interaction, where the Hal? ions are the donors of electron pair with respect to the metal.  相似文献   

4.
By means of an ac bridge, the differential capacitance vs. potential curves are measured in systems (Tl-Ga)/[N-MF + 0.1m M KI + 0.1(1 ? m) M KClO4], (Tl-Ga)/[N-MF + 0.1m M KBr + 0.1(1 ? m) M KClO4], and (Tl-Ga)/[N-MF + 0.1m M KCl + 0.1(1 ? m) M KClO4] for the following fractions m of the surfaceactive anion: 0, 0.02, 0.05, 0.1, 0.2, 0.5, and 1. Based on the analysis of curves of two-dimensional pressure found by integrating the differential capacitance, it is shown that the data on the specific adsorption of anions I?, Br?, and Cl? in the mentioned systems can be quantitatively described by the Frumkin isotherm. The main adsorption parameters of I?, Br?, and Cl? anions at the (Tl-Ga)/N-MF interface are determined. It is found that on the (Tl-Ga)/N-MF interface, the same as on the (In-Ga)/N-MF interface, the adsorption energy of ions increases in the sequence Cl? < Br? < I?, in contrast to the Ga/N-MF interface, where the energy increases in the reverse sequence: I? ≈ Br? < I?. For all halide ions (Hal?), the adsorption energy and the energy of metal-Halinteraction increase in the sequence (Tl-Ga) < (In-Ga) < Ga.  相似文献   

5.
The adsorption of tetraethylammonium (TEA+) ions on the (001) and planes of the bismuth single crystal from solutions in ethanol has been investigated by impedance measurement method. The experimental data were obtained in 0.02 M mixed-electrolyte solutions and the calculations performed with electrode potential as the independent electrical variable. The Gibbs energy of adsorption of TEA+ ions has been calculated using the simple virial adsorption isotherm, and it was found that the adsorption of TEA+ cations is weaker than the adsorption of halide anions. The electrosorption valency evaluated has a nearly constant value in the potential region studied. It was concluded that the formed effective surface dipole is significantly screened by the solvent molecules and the metal electron gas. The analysis of the impedance spectra was performed by fitting the experimental data to the various equivalent circuits. It was found that the behaviour of TEA+ ions at Bi(hkl)∣ethanol interface can be described with the equivalent circuit, corresponding to the classical Frumkin–Melik-Gaikazyan model. The results obtained indicate that only weak interaction between TEA+ ions and bismuth surface takes place, and there is no remarkable partial charge transfer from the adsorbed ions to the Bi surface atoms.  相似文献   

6.
The specific adsorption of Cl? ions at the bismuth-ethanol interface has been studied both in the solutions of mixed electrolytes with constant ionic strength and in the binary LiCl solutions by the method of measuring the potential dependence of differential capacity of bismuth. The charge due to specifically adsorbed anions was calculated from the experimental capacity data. It was found that in the case of specific adsorption of Cl? ions at the bismuth—ethanol interface the conditions of undercharged as well as recharded surface of electrode could be observed experimentally. The analysis of the results obtained by fitting the charge of specifically adsorbed ions to the modified virial isotherm including the diffuse layer correction term suggests that in the conditions of recharge of the bismuth surface cations enter the inner part of the double layer and a considerable ionic association occurs in the inner layer. A procedure has been proposed for calculating the charge due to cations in the inner layer, for determining the actual value of the outer Helmholtz plane potential and for evaluating the real parameters of the adsorption isotherm. The reliability of the results of calculations was verified by comparing the data obtained by the method of mixed electrolytes both considering and neglecting the ionic association in the inner layer with the data of the method of binary electrolyte.  相似文献   

7.
Differential capacitance curves in the (In-Ga)/[N-methylformamide + mc KCl + (1 ? m)c KClO4] and (In-Ga)/[N-methylformamide + mc KBr + (1 ? m)c KClO4] systems are measured using an ac bridge for the following molar portions m of the surface-active anion: 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1. The Cl? and Br? anions specific adsorption in the systems can be described quantitatively by the Frumkin isotherm. The principal parameters of Cl? and Br? anions adsorption at the (In-Ga)/N-methylformamide interface are determined by different methods. Unlike Ga/N-methylformamide interface, where the adsorption energy increased in the sequence I? ≈ Br? < Cl?, at the (In-Ga)/N-methylformamide interface it increased in the reverse sequence: Cl? < Br? < I?. The adsorption parameters at the charge density q = 0, obtained by three different methods, are close to each other. However, the parameters α1 and α2, which characterize the charge effect on the adsorption energy, when determined by the analyzing of dependences of adsorption potential drop E ads on ln(mc), differ from those determined by two other methods. The error may be caused by the assuming that the adsorption potential drop is proportional to the coverage of dense layer with the specifically adsorbed ions.  相似文献   

8.
Acid dissociation, as well as cationic homoconjugation equilibria have been studied potentiometrically in systems involving four di-substituted 4-nitropyridines and conjugate cationic acids in the polar non-aqueous solvents - aprotic protophobic acetonitrile (AN) and propylene carbonate (PC), the amphiprotic methanol (MeOH), and in the aprotic protophilic dimethyl sulfoxide (DMSO). The influence of solvent effect on the obtained acidity constants has been discussed. The acidity constants (expressed as pKa values) were compared with those previously determined in another polar protophobic aprotic solvent - acetone (AC), and obtained for the unsubstituted pyridine (Py). A comparison of the acid dissociation constants determined in all media studied has proved that the strength of the cationic acids increases on going from acetonitrile through propylene carbonate, acetone, and methanol to dimethyl sulfoxide. Furthermore, the values of acidity constants in the non-aqueous media have shown that in all the solvents studied they change according to the substituent effects. It has been also found that substituted 4-nitropyridine derivatives studied exhibit no tendency towards cationic homoconjugation in acetonitrile, propylene carbonate, and methanol and dimethyl sulfoxide. Moreover, it has been demonstrated that the acid dissociation constants determined by potentiometric titration method in all the solutions investigated correlate well with the calculated energy parameters of the protonation reactions in the gaseous phase.  相似文献   

9.
A reference electrode is described that is reversible and reproducible in hexamethyl phosphoric triamide; it was used to study the adsorption of 1 : 1 electrolytes at the mercury—solution interface. The differential capacity curves show features similar to those found for water and the degree of specific adsorption of the anions follows the same sequence: PF?6 < BF?4, ClO?4 < Br?. There appears to be no specific adsorption of the alkali metal cations at negative charge values whereas the tetraalkyl ammonium ions are strongly adsorbed.  相似文献   

10.
Ab initio molecular dynamics (MD) simulations of the solvation of LiI3 in four different solvents (water, methanol, ethanol, and acetonitrile) are employed to investigate the molecular and electronic structure of the I3? ion in relation to X‐ray photoelectron spectroscopy (XPS). Simulations show that hydrogen‐bond rearrangement in the solvation shell is coupled to intramolecular bond‐length asymmetry in the I3? ion. By a combination of charge analysis and I 4 d core‐level XPS measurements, the mechanism of the solvent‐induced distortions has been studied, and it has been concluded that charge localization mediates intermolecular interactions and intramolecular distortion. The approach involving a synergistic combination of theory and experiment probes the solvent‐dependent structure of the I3? ion, and the geometric structure has been correlated with the electronic structure.  相似文献   

11.
Resolution of the activities of solutions of electrolytes into the individual ionic contributions cannot be carried out rigorously and requires the introduction of extrathermodynamic assumptions which have inherent uncertainties. The most commonly used approaches are basically similar in that they are based on the assumed solvent independence of the difference in the enthalpy or Gibbs energy of transfer of pairs of model solutes, e.g., tetraphenylarsonium and tetraphenylborate ions, or ferricinium ion and ferrocene. In this work we follow an alternative approach pioneered by Parsons involving measurement in the jet (Kenrick) cell of outer-potential differences between solutions of the same electrolyte in two solvents. These potential differences provide the real free energies of transfer of individual ions which, in turn, differ from the usual Gibbs energies of transfer by the work required to transfer the ion through the dipolar layers at the two solvent-gas interfaces. One objective of this work was to improve the reliability of real free energy of transfer measurements, which are experimentally demanding, to within ca. ±0.5 kJ-mol–1 in order to match typical uncertainties in Gibbs transfer energies of electrolytes. This goal was met, in most instances, by careful evaluation of experimental parameters (particularly jet pressure). A major improvement over previous measurements was made by adding a supporting electrolyte which allowed stable potentials to be obtained at test electrolyte concentrations as low as 10–4M. Real free energy changes are reported for the transfer of silver ion from water to methanol, ethanol, acetonitrile, propylene carbonate and dimethyl sulfoxide, as well as for the transfer of chloride ion from water to methanol and ethanol. Reliable data of this kind may lead to improved understanding of either the properties of the surfaces of solvents or the interactions of model solutes with solvents, depending on which of the two fields develops most.  相似文献   

12.
Thermodynamics and kinetics of nicotinamide adenine dinucleotide (NAD+) adsorption on a glassy carbon (GC) electrode surface was investigated at various electrode potentials and NAD+ concentrations using differential capacitance (DC) and attenuated total reflection Fourier transform infrared (ATR-FTIR) techniques. Equilibrium adsorption measurements confirmed that NAD+ spontaneously and strongly adsorbs on the GC electrode surface. The affinity of NAD+ towards adsorption on the GC electrode surface was found to increase with an increase in electrode potential (charge) to more positive values; the corresponding apparent Gibbs free energy of adsorption was ?32.80?±?0.25, ?35.61?±?0.86, and ?38.02?±?0.40 kJ mol?1 on negatively, neutral, and positively charged electrode surfaces, respectively. The kinetics of NAD+ adsorption is also found to be highly dependent on the electrode surface potential (charge), and it increases with an increase in electrode potential (charge) to positive values. The adsorption process was modeled using a two-step kinetic model, in which the adsorption process involves the formation of two forms of NAD+ on the surface: the thermodynamically unstable (NAD+ ads,rev) and stable (NAD+ ads,stable) forms. ATR-FTIR further confirmed that NAD+, indeed, adsorbed on the GC electrode surface.  相似文献   

13.
Adsorption of Cl, Br, and I (Hal) ions from their 0.1 M solutions in N-methylformamide, a solvent with the highest permittivity (182.4 at 25°C), at liquid Ga-, (In-Ga)-, and (Tl-Ga)-electrodes with refreshable surface was studied by the measuring of differential capacitance and by using an open-circuit jet electrode. It is shown that the adsorption parameters and the surface activity series depend significantly on the metal nature. For the (In-Ga)- and (Tl-Ga)-electrodes, like for Hg-electrode, the halogenide-ion surface activity increases in the following series: Cl < Br < I; for the Ga-electrode, it varies in the opposite sequence: I < Br < Cl. By example of the Ga-electrode in N-methylformamide, it is shown for the first time that the phenomenon of the surface activity series reversal can be observed not only in aprotic solvents but also in protonic ones. The data obtained in N-methylformamide is compared with that obtained in dimethyl formamide and acetonitrile. The halogenide-ion adsorption at the Ga-, (In-Ga)-, and (Tl-Ga)-electrodes decreases in the series N-methylformamide < dimethyl formamide < acetonitrile. The results in aggregate are explained in terms of the Andersen-Bockris model. The data obtained in N-methylformamide, dimethyl formamide, and acetonitrile evidence the increase of ΔG M-Hal in the series (Tl-Ga) < (In-Ga) < Ga, that is, with the increasing of the metal work function. This points out the donor-acceptor nature of the metal-halogenide-ion interaction, in which the halogenide-ions are donors of electron pair with respect to the metals.  相似文献   

14.
The adsorption of Cl, Br, and I ions on the renewable liquid In-Ga and Tl-Ga electrodes from 0.1 M solutions in dimethyl formamide (DMF) is investigated by using the method of differential capacitance measurements. The results are compared with similar data obtained on Hg and Ga electrodes in DMF and with the corresponding data obtained in acetonitrile (AN). It is shown that, in DMF, the adsorption parameters and the series of surface activity of halide ions (Hal) significantly depend on the metal nature. In contrast to Hg electrode, on which the surface activity of halide ions increases in the series: Cl < Br < I, on In-Ga, as well as on the Ga electrode, it varies in the reverse order: I < Br < Cl, whereas on the Tl-Ga electrode, partially reversed series of surface activity is observed: Br < I < Cl. The results are explained within the framework of Andersen-Bockris model. An analysis of experimental results leads to the following qualitative conclusions: (1) on the In-Ga and Tl-Ga electrodes, as well as on Ga electrode, free energy of metal-Hal interaction ( $ \Delta G_{_{M - Hal^ - } } $ \Delta G_{_{M - Hal^ - } } ) increases in series I < Br < Cl; (2) for Cl, Br, and I, $ \Delta G_{_{M - Hal^ - } } $ \Delta G_{_{M - Hal^ - } } ) grows in series Tl-Ga < In-Ga < Ga; (3) an absolute magnitude of $ \Delta G_{_{M - Hal_1^ - } } - \Delta G_{_{M - Hal_2^ - } } $ \Delta G_{_{M - Hal_1^ - } } - \Delta G_{_{M - Hal_2^ - } } (Hal1, and Hal2 are any ions of Cl, Br, and I) increases in series Hg < Tl-Ga < In-Ga < Ga; (4) the metal-DMF chemisorption interaction is much stronger than the metal-AN interaction and increases in series Tl-Ga < In-Ga < Ga.  相似文献   

15.
The adsorption of Cl, Br, and I ions from their 0.1 M solutions in dimethyl formamide at renewable liquid Hg- and Ga-electrodes was studied under similar experimental conditions by the differential-capacitance and jet-electrode methods. The data obtained points out to a strong effect of the metal nature on adsorption parameters and the halogenide-ion surface activity series. The halogenide-ion surface activity at the Hg-electrode increased in the following sequence: Cl < Br < I; at the Ga-electrode, in the reverse sequence: I < Br < Cl. The results are explained qualitatively in terms of the Andersen-Bockris model. It follows from the obtained data that (1) the free energy of the metal-halogenide-ion interaction increases in the following sequence: I < Br < Cl; (2) the free energy of the Ga-halogenide-ion interaction exceeds that of the Hghalogenide-ion interaction; and (3) the difference of the Cl, Br, and I ions interaction with the metals increased significantly when passing from Hg to Ga-electrode.  相似文献   

16.
The enthalpies of solution of sodium iodide in methanol, ethanol and acetone and in mixtures of methanol and ethanol with water were measured over wide ranges of electrolyte concentration and temperature. Standard enthalpies of solution, transfer enthalpies of NaI from alcohols to alcohol-water mixtures, and temperature coefficients of enthalpies of solution have been calculated. Thermodyanmic characteristics of solution and solvation of the Na+ and I ions in acetone and ethanol were determined at 243–298 K. It is noted that at lower temperatures the disruption of solvent structure by ions is a local effect. The presence of negative solvation of the Na+ and I ions in alcohol-water mixtures at lower temperatures is demonstrated.  相似文献   

17.
The problem of the irreversibility of the adsorption of Cl? ions on platinum has been studied by a tracer method described previously. The mobility of adsorbed Cl? ions has been observed in the following experiments: in the exchange of adsorbed labelled Cl? with nonlabelled dissolved Cl? ions; in the desorption caused by the rinsing of the electrode; in the displacement of adsorbed Cl? ions by Br? and I? ions; in the simultaneous adsorption of Cl? ions and other halide ions. In the light of these results the views based on the assumption of irreversibility have been criticized.  相似文献   

18.
The response of ion-selective electrodes with a membrane of polyacrylamide (PAA) coupled to acyclic poly(oxyethylene) neutral carriers to lithium, sodium, potassium, magnesium and barium ions in propylene carbonate (PC) was investigated. Tetraethylene glycol monododecyl ether (POE4) and hexaethylene glycol monododecyl ether (POE6) were used as the acyclic poly(oxyethylene). Both the PAA-POE4 and the PAA-POE6 electrodes showed a more rapid dynamic response in PC than that in acetonitrile. Nernstian responses to lithium, magnesium and barium ions were obtained with the PAA-POE4 electrode. The selectivity coefficients, logkBa2+,Mx+, for lithium, sodium, potassium and magnesium ions vs. barium ion obtained in PC with the PAA-POE4 electrode were 3.6, 0.23, 0.02 and 1.1, respectively. The PAA-POE4 electrode was applied to obtain the successive formation constants of the barium ion in PC with N, N-dimethylacetamide (DMA). From the successive formation constants obtained in PC-rich solutions, the Gibbs free energies of transfer of the barium ion from PC to DMA and to PC-DMA mixtures were calculated. The electrode was also used to obtain directly the Gibbs free energies of transfer of the barium ion from PC to PC-DMA mixtures. The calculated values of the free energies were in good agreement with the values obtained experimentally, suggesting that the electrode responded to variations in solvation energy for the barium ion.  相似文献   

19.
The use of organic solvents or mixture of solvents in capillary electrophoresis is gaining wider attention. The electroosmotic flow mobility of eight organic solvents (acetonitrile, acetone, dimethylformamide, dimetylsulphoxide, propylene carbonate, methanol, ethanol, n-propanol) and of mixtures of several solvents (methanol-acetonitrile, methanol-propylene carbonate, acetonitrile-propylene carbonate) has been studied. The influence of 1,3-alkylimidazolium salts in different solvents on the separation of different analytes has been investigated. Some of these salts have shown usefulness for matrix-assisted laser desorption ionization matrices and off-line analysis of electrophoresis fractions. It also appears that nonaqueous capillary electrophoresis with 1,3-alkylimidazolium salts as background electrolytes is suitable for separation small inorganic ions.  相似文献   

20.
For the solvolysis of Co(4-t-Bupy)4Cl2? ions in water + methanol and water + ethanol, log (rate constant) does not vary linearly with the reciprocal of the dielectric constant. The Gibbs free energy, the enthalpy, and the entropy of activation are insensitive to changes in the solvent composition in these mixtures, although a slight broad maximum in ΔH* and ΔS* probably exists at mole fractions of about 0.2 in water + ethanol. This contrasts with the extrema in ΔH* and ΔS* found with more hydrophobic alcohols used as cosolvents. However, the application of a Gibbs energy cycle to the solvolysis in water and in the mixtures shows that there is a differential effect of changes in solvent structure on the emergent solvated CoIII cation in the transition state and on Co(4-t-Bupy)4Cl2+ in the initial state. The stability of the former increases relative to that of the latter as the cosolvent content of the mixture rises. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号