首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
镍助剂对碳化钼催化剂的二苯并噻吩加氢脱硫性能的影响   总被引:3,自引:0,他引:3  
 将MoO3和Ni-Mo混合氧化物在CH4/H2气氛中程序升温还原碳化制备了相应的碳化钼和碳化镍钼催化剂, X射线粉末衍射表征其物相分别为β-Mo2C和Ni-Mo2C. 考察了Ni助剂对碳化钼催化剂的制备及二苯并噻吩加氢脱硫反应性能的影响. 结果表明, Ni助剂的加入降低了碳化钼催化剂所需的还原碳化温度,提高了催化剂的比表面积,并对其二苯并噻吩加氢脱硫反应活性有明显的促进作用. Ni助剂添加量以Ni/Mo原子比为0.3为宜,此时Ni和Mo之间的催化协同效应达到最佳. 当反应压力为3.0 MPa, 反应温度为330 ℃, 空速8 h-1, H2/原料液体积比为500∶1时, 625 ℃还原碳化制备的碳化镍钼催化剂对0.6%二苯并噻吩/环己烷溶液的二苯并噻吩转化率达到96.25%, 较相应的碳化钼催化剂提高了1.57倍.  相似文献   

2.
制备条件对碳化钼催化剂加氢脱硫性能的影响   总被引:1,自引:1,他引:0  
以MoO3为前驱体,在CH4/H2气氛中程序升温还原碳化反应制备了Mo2C催化剂,用XRD和BET进行了表征. 以二苯并噻吩/环己烷溶液为模型反应物,评价了制备条件对碳化钼催化剂加氢脱硫性能的影响. 结果表明,在还原碳化温度为675 ℃,恒温保持150 min的合成条件下可制得高纯度的a-Mo2C催化剂,该催化剂表现出了较高的加氢脱硫活性,用质量分数为0.6%的二苯并噻吩/环己烷溶液为反应物,反应压力3.0 MPa,反应空速8 h-1,反应温度330 ℃实验条件下的二苯并噻吩加氢脱硫转化率达到了73.29%. 随还原碳化温度的升高和恒温保持时间的延长,制备的碳化钼催化剂的比表面积下降,表面积炭增多,引起其二苯并噻吩加氢脱硫活性的下降. 适当增大制备过程中还原碳化气体空速,有利于还原碳化反应过程中C、 O之间局部规整反应的进行,并对其二苯并噻吩加氢脱硫活性有明显的促进作用. 实验确定的还原碳化气体空速以1.8×104h-1为宜.  相似文献   

3.
模型石脑油在硫化Co-Mo/SBA-15催化剂上的加氢异构化反应   总被引:2,自引:1,他引:2  
通过浸渍法制备了Co/SBA-15、Mo/SBA-15和Co-Mo/SBA-15催化剂,对催化剂的孔结构、物相及表面酸性进行了表征,测定了硫化催化剂上噻吩加氢脱硫及1-己烯加氢异构的反应性能,并与工业Co-Mo/γ-Al2O3催化剂进行了对比.结果表明,Co-Mo/SBA-15催化剂表面具有较强的B酸中心,且对噻吩加氢脱硫具有较高的催化活性;而Co-Mo/γ-Al2O3催化剂表面主要为较强的L酸中心,对1-己烯加氢具有较高的催化活性.Mo/SBA-15催化剂的B酸酸性较强,但同时具有较高的1-己烯加氢活性,故它对1-己烯骨架异构的催化活性不高.Co-Mo/SBA-15催化剂的加氢活性相对较低,1-己烯容易在其较强的B酸中心上发生骨架异构反应,具有潜在的工业化应用前景.  相似文献   

4.
应用X射线衍射(XRD)、程序升温还原(TPR)技术对等体积浸渍法制备的Co—Mo/CNT催化剂进行了表征,采用高压微反装置、以二苯并噻吩为模型化合物,对催化剂进行了HDS活性评价,XRD结果表明:260℃条件下处理催化剂,催化剂的表面物种主要是MoO3,表面物种高度分散;500℃焙烧处理的催化剂的表面物种主要是MoO2,同时在Co—Mo/CNT催化体系中出现了CoMoO3和Co2Mo3O03物种的强衍射峰,高温焙烧时催化剂活性组分在碳纳米管的表面容易聚集形成MoO2等晶体,TPR结果表明:在Co-Mo/CNT催化剂中,表面物种的还原温度低于Co—Mo/γ—Al2O3中物种的还原温度,活性评价表明:催化剂的TPR特性和加氢脱硫活性有很好的对应关系,Co—Mo/CNT具有很高的加氢脱硫选择性,并且活性明显高于Co—Mo/γ—Al2O3催化剂。  相似文献   

5.
通过硝酸钴与硅酸钠共沉淀、辅以正丁醇干燥技术制备了具有原子分散度的Co-O-Si复合氧化物(Co/Si原子比 ≈ 0.65),该催化剂具有较大的比表面积(562 m2/g)和较强表面酸性. 在硫化处理后,能够形成高度分散的硫化物活性组分,在模型汽油加氢处理反应中显示了较高的催化活性,在573 K时,噻吩的加氢脱硫活性可达99.4%,同时,1-己烯的骨架异构收率达到了35%. 该催化剂虽然不含Mo,其加氢脱硫活性可与工业催化剂Co-Mo/γ-Al2O3相当. 而在汽油深度加氢脱硫过程中,直链烯烃往往被加氢饱和,造成辛烷值损失. 该催化剂则可使部分直链烯烃发生骨架异构而生成异构烷烃,可减少深度加氢脱硫过程中的辛烷值损失.  相似文献   

6.
Ru作为Co—Mo/Al2O3加氢脱硫催化剂助剂的研究   总被引:2,自引:0,他引:2  
用Ru改性的Ru-Co-Mo/Al_2O_3对噻吩加氢脱硫的催化性能进行了考察。结果表明,与Co-Mo/Al_2O_3相比,Ru-Co-Mo/Al_2O_3的加氢脱硫活性增高。通过CO、NO吸附的红外光谱实验证实,由于Ru的加入,吸附在Co和Mo中心上的特征谱带向低波数移动,且峰强度增强,这些结果提出了在硫化态Ru-Co-Mo/Al_2O_3上,Ru中心的部分d电子转移到Co、Mo中心的周围或由于Ru的存在促进了Co、Mo中心的还原。  相似文献   

7.
采用饱和浸渍法制备了不同Co-Mo原子比(0.25,0.30,0.35,0.40,0.45)和Co-Mo负载量(2.35%,4.36%,7.48%和10.79%)的CoMo S/ZrO_2催化剂。用X射线衍射(XRD)、程序升温还原(H_2-TPR)、氮气吸附和X射线光电子能谱(XPS)对催化剂进行了表征。以4-甲基苯酚为模型化合物进行加氢脱氧反应。结果表明,当Co-Mo(Co/Co+Mo)原子比为0.30,Mo负载量为4.36%时,催化加氢活性最好,4-甲基苯酚的转化率可达99.86%,直接加氢脱氧产物甲苯的选择性达到87.85%,较高程度保持了芳环。CoMoO_4的产生不利于甲苯的生成。Co-Mo和ZrO_2之间需要适当的相互作用。  相似文献   

8.
以脱硫选择性不同的2组催化裂化汽油加氢脱硫催化剂为研究对象, 采用CO吸附原位红外光谱表征了2组催化剂的活性相特征, 并通过分子模拟计算方法比较了助剂Co加入前后噻吩和1-己烯在催化剂表面的电荷分布、吸附能及其加氢反应的活化能等, 探讨了助剂Co的加入对选择性加氢脱硫催化剂脱硫选择性的作用机理. 结果表明, 加氢脱硫催化剂CoMoS活性相的增加有利于提高催化剂的加氢脱硫/加氢降烯烃(HDS/HYD)选择性. 与1-己烯加氢位相比, Co的加入显著提高了噻吩分子加氢位的缺电子性, 噻吩在催化剂表面的吸附度增强, 显著降低噻吩加氢反应的能垒, 从而使噻吩加氢反应更易进行. 这也表明CoMoS为高HDS活性、高HDS/HYD选择性的活性相.  相似文献   

9.
二苯并噻吩在CoMoNx催化剂上的加氢脱硫   总被引:20,自引:0,他引:20  
以MoO3及沉淀法制得的CoMo氧化物为前驱体,在N2-H2混合气中用程序升温反应制得一系列氮化(钴)钼催化剂;用二苯并噻吩加氢脱硫为模型反应,考察了催化剂的催化性能。结果表明:⑴二苯并噻吩在氮化钼催化剂上的加氢脱硫有两条反应途径,即噻吩环直接氢解加氢脱硫;苯环先加氢,然后噻吩环氢解脱硫。⑵氮化钼有高的活性和选择C—S键断裂生成联苯的选择性,Co的加入明显提高了氮化钼的催化活性。⑶不同预处理条件对  相似文献   

10.
制备条件对磷化钼加氢脱硫催化活性的影响   总被引:1,自引:1,他引:0  
采用程序升温还原方法制得磷化钼(MoP)催化剂,在常压连续微型化反应装置中,以噻吩为模型化合物,对催化剂的加氢脱硫活性进行评价。考察了还原温度、磷钼摩尔比、不同磷源等制备条件对MoP催化活性的影响。实验结果表明,在MoP生成温度区间内,随着还原温度的升高,催化剂活性降低;磷钼摩尔比为1∶1时,噻吩转化率最高,而磷钼摩尔比为1∶2和2∶1时制备催化剂的催化活性相当;采用磷酸二氢铵、磷酸铵以及磷酸为磷源,均可制得磷化钼,而以磷酸二氢铵为磷源时制备磷化钼催化剂的活性最佳。在噻吩加氢脱硫反应条件下反应后,不同磷源制备的磷化钼整体物相均没有发生变化。  相似文献   

11.
A series of molybdenum carbide catalysts promoted by potassium and cobalt,supported on carbon nanotubes(CNTs) were prepared by carbothermal hydrogen reduction method using CNTs as a carbon precursor.Firstly,molybdenum and cobalt were loaded by co-precipitation method,and then potassium and additional molybdenum were impregnated to previous resultant.Different Mo/Co and K/Co molar ratio were used in catalyst synthesis.All the catalysts were characterized by ICP,BET,TEM,TPR,XRD and XPS,and the catalysts performances for higher alcohols synthesis(HAS) were investigated in a fixed-bed micro-reactor.The maximum selectivity to higher alcohols(C2+OH) was obtained at Mo/Co and K/Mo molar ratios of 1.66 and 0.6,respectively.XRD results confirmed the formation of K-Mo-C site and Co3Mo3 C phase that might play important role in producing C2+OH.  相似文献   

12.
A CoMo/gamma-Al(2)O(3) catalyst, prepared by depositing on the Al(2)O(3) carrier first the Mo species via equilibrium deposition filtration (EDF) and then the Co species by dry impregnation, was compared to three CoMo/gamma-Al(2)O(3) samples prepared using various conventional impregnation methods. All samples had the same composition, corresponding to an atomic ratio Co/(Co+Mo) equal to 0.3. The above samples were characterized using various physicochemical techniques (AAS, BET, DRS, LRS, XPS, TPR, and NO chemisorption), and their catalytic activity was determined using the hydrodesulfurization (HDS) of thiophene as a probe reaction. The EDF-prepared catalyst was about 30-43% more active in HDS than those prepared with the conventional impregnation techniques at all reaction temperatures studied. In contrast, the EDF catalyst exhibited the lowest hydrogenation activity. The higher HDS activity of the EDF sample is attributed to the higher number of active HDS sites formed on its surface. It is concluded that the increased number of active sites is due to the fact that the deposition of the Mo species by EDF results to a higher coverage of the support surface by supported molybdenum phase, which in turn, inhibits the formation of the catalytically inactive CoAl(2)O(4) and favors the dispersion of octahedral cobalt on its surface.  相似文献   

13.
The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.  相似文献   

14.
A series of CoMo/gamma-Al(2)O(3) catalysts have been prepared using various methodologies. One of them (EDF) was prepared by depositing the Mo species on the support via the equilibrium deposition filtration (EDF) technique and then the Co species by dry impregnation. Another catalyst (co-EDF) was prepared by depositing the Co and Mo species simultaneously via EDF. A third catalyst (co-WET) was prepared by depositing Mo and Co species simultaneously using the wet impregnation method. The fourth catalyst (WET) was prepared by depositing the Mo species through wet impregnation and then the Co species by dry impregnation. Finally, the fifth catalyst (s-DRY) was prepared by mounting the Mo species through successive dry impregnations and then the Co species by dry impregnation. In all cases the Mo and Co content was identical, giving a Co/(Co+Mo) ratio equal to 0.13. These catalysts were characterized using various physicochemical techniques (BET, NO chemisorption, DRS, LRS, TPR, and XPS), and their catalytic activity for the hydrodesulfurization of thiophene was determined. The trend observed for the HDS activity (namely, EDF>co-EDF>co-WET>s-DRY>WET) is attributed to similar trends observed for both the fraction of well-dispersed octahedral cobalt in the oxidic precursors and the concentration of the edge sulfur vacancies formed on the active phase of the sulfided samples. The EDF and co-EDF catalysts exhibited relatively low hydrogenating activity. The maximum HDS activity, achieved over the EDF catalyst, suggested the most suitable preparative strategy for the preparation of very active and less hydrogen-demanding CoMo/gamma-Al(2)O(3) HDS catalysts.  相似文献   

15.
碳化钼催化剂加氢脱氮性能研究   总被引:3,自引:3,他引:0  
MoO3在CH4/H2气氛中程序升温还原碳化反应制备了Mo2C催化剂,用XRD、BET、SEM、XPS进行了表征。以吡啶/环己烷溶液为模型化合物,在高压微反装置上评价了碳化钼催化剂的吡啶加氢脱氮性能。结果表明,MoO3在CH4/H2气氛中程序升温至675℃可制得高纯度的β-Mo2C,SEM表征其形貌为板块状颗粒,平均粒径约3.9μm,比表面积达到了10.7m2/g,高于其前驱体MoO3 的2.7倍。在反应压力3.0MPa,空速为8h-1,H2/原料液体积比为500∶1,体积分数为5%的吡啶/环己烷溶液中,碳化钼催化剂在340℃下的吡啶加氢脱氮转化率达到了86.30%,高于相应MoS2约8%。随还原碳化温度的升高,碳化钼催化剂的比表面积降低,表面积炭增多,导致其吡啶加氢脱氮活性下降。确定的碳化钼催化剂的合成条件以还原碳化温度675℃、还原碳化气体空速1.8×104h-1左右较为适宜。  相似文献   

16.
A series of lanthanum modified Al-MCM-41 substrates served as supports to prepare the Mo/La-Al-MCM-41 catalysts. The catalysts were characterized by XRD, BET, FT-IR, XPS, TPR and TPD, and their catalytic activities were determined for thiophene hydrodesulfurization (HDS).  相似文献   

17.
An efficient method for preparation of Mo(2)C catalyst is described, where Mo(2)C is obtained by the heat treatment of a single solid precursor containing (NH(4))(6)Mo(7)O(24) and hexamethylenetetramine (HMT) at 923 K in H(2) flow without conventional prolonged carbonization. The catalysts are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area measurement, and transmission electron microscopy (TEM). Furthermore, these catalysts are evaluated in the dibenzothiophene (DBT) hydrodesulfurization (HDS) reaction, and proved to be superior to those prepared by a temperature-programmed reduction (TPRe) method. The better catalytic performance is ascribed to higher dispersion of Mo(2)C on the support and a lower surface polymeric carbon content. This hydrogen thermal treatment (HTT) method provided a new strategy for the preparation of a highly active molybdenum carbide catalyst.  相似文献   

18.
With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage) MoiCoj/CNTs, were prepared. Their catalytic performance for thiophene hydrodesulfurization (HDS) and pyrrole hydrodenitrification (HDN) reactions was studied, and compared with the reference system supported by AC. Over the 7.24%Mo3Co1/CNTs catalyst at reaction condition of 1.5 MPa, 613 K, C4H4S/H2=3.7/96.3(molar ratio) and GHSV≈8000 mlSTp/(g-cat·h), the specific HDS activity of thiophene reached 3.29 mmolc4H4s/(s·molMo), which was 1.32 times as high as that (2.49 mmolC4H4s/(s·molMo)) of the AC-based counterpart, and was 2.47 times as high as that (1.33 mmolC4H4s/(s·molMo)) of the catalysts supported by AC with the respective optimal Mo3Co1-loading amount, 16.90%Mo3Co1/AC. Analogous reaction-chemical behaviours were also observed in the case of pyrrole HDN. It was experimentally found that using the CNTs in place of AC as support of the catalyst caused little change in the apparent ac-tivation energy for the thiophene HDS or pyrrole HDN reaction, but led to a significant increase in the concentration of catalytically active Mo-species (Mo4 ) at the surface of the functioning catalyst. On the other hand, H2-TPD measurements revealed that the CNT-supported catalyst could reversibly adsorb a greater amount of hydrogen under atmospheric pressure at temperatures ranging from room temperature to about 673 K. This unique feature would help to generate microenvironments with higher stationary-state concentration of active hydrogen-adspecies at the surface of the functioning catalyst. Both factors mentioned above were favorable to increasing the rate of thiophene HDS and pyrrole HDN reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号