首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints together can produce bounds that are substantially better than either technique used alone. For highly symmetric problems we also consider the effect of symmetry-breaking based on tightened bounds on variables and/or order constraints.  相似文献   

2.
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

3.
The satisfiability (SAT) problem is a central problem in mathematical logic, computing theory, and artificial intelligence. An instance of SAT is specified by a set of boolean variables and a propositional formula in conjunctive normal form. Given such an instance, the SAT problem asks whether there is a truth assignment to the variables such that the formula is satisfied. It is well known that SAT is in general NP-complete, although several important special cases can be solved in polynomial time. Semidefinite programming (SDP) refers to the class of optimization problems where a linear function of a matrix variable X is maximized (or minimized) subject to linear constraints on the elements of X and the additional constraint that X be positive semidefinite. We are interested in the application of SDP to satisfiability problems, and in particular in how SDP can be used to detect unsatisfiability. In this paper we introduce a new SDP relaxation for the satisfiability problem. This SDP relaxation arises from the recently introduced paradigm of higher liftings for constructing semidefinite programming relaxations of discrete optimization problems. To derive the SDP relaxation, we first formulate SAT as an optimization problem involving matrices. Relaxing this formulation yields an SDP which significantly improves on the previous relaxations in the literature. The important characteristics of the SDP relaxation are its ability to prove that a given SAT formula is unsatisfiable independently of the lengths of the clauses in the formula, its potential to yield truth assignments satisfying the SAT instance if a feasible matrix of sufficiently low rank is computed, and the fact that it is more amenable to practical computation than previous SDPs arising from higher liftings. We present theoretical and computational results that support these claims.Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

4.
In this paper we consider the standard linear SDP problem, and its low rank nonlinear programming reformulation, based on a Gramian representation of a positive semidefinite matrix. For this nonconvex quadratic problem with quadratic equality constraints, we give necessary and sufficient conditions of global optimality expressed in terms of the Lagrangian function.  相似文献   

5.
In this paper, we propose to enhance Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations for polynomial programming problems by developing cutting plane strategies using concepts derived from semidefinite programming. Given an RLT relaxation, we impose positive semidefiniteness on suitable dyadic variable-product matrices, and correspondingly derive implied semidefinite cuts. In the case of polynomial programs, there are several possible variants for selecting such particular variable-product matrices on which positive semidefiniteness restrictions can be imposed in order to derive implied valid inequalities. This leads to a new class of cutting planes that we call v-semidefinite cuts. We explore various strategies for generating such cuts, and exhibit their relative effectiveness towards tightening the RLT relaxations and solving the underlying polynomial programming problems in conjunction with an RLT-based branch-and-cut scheme, using a test-bed of problems from the literature as well as randomly generated instances. Our results demonstrate that these cutting planes achieve a significant tightening of the lower bound in contrast with using RLT as a stand-alone approach, thereby enabling a more robust algorithm with an appreciable reduction in the overall computational effort, even in comparison with the commercial software BARON and the polynomial programming problem solver GloptiPoly.  相似文献   

6.
This paper applies the SDP (semidefinite programming)relaxation originally developed for a 0-1 integer program to ageneral nonconvex QP (quadratic program) having a linear objective functionand quadratic inequality constraints, and presents some fundamental characterizations of the SDP relaxation including its equivalence to arelaxation using convex-quadratic valid inequalities for the feasible regionof the QP.  相似文献   

7.
We propose in this paper a general D.C. decomposition scheme for constructing SDP relaxation formulations for a class of nonconvex quadratic programs with a nonconvex quadratic objective function and convex quadratic constraints. More specifically, we use rank-one matrices and constraint matrices to decompose the indefinite quadratic objective into a D.C. form and underestimate the concave terms in the D.C. decomposition formulation in order to get a convex relaxation of the original problem. We show that the best D.C. decomposition can be identified by solving an SDP problem. By suitably choosing the rank-one matrices and the linear underestimation, we are able to construct convex relaxations that dominate Shor’s SDP relaxation and the strengthened SDP relaxation. We then propose an extension of the D.C. decomposition to generate an SDP bound that is tighter than the SDP+RLT bound when additional box constraints are present. We demonstrate via computational results that the optimal D.C. decomposition schemes can generate both tight SDP bounds and feasible solutions with good approximation ratio for nonconvex quadratically constrained quadratic problems.  相似文献   

8.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

9.
This paper considers the solution of nonconvex polynomial programming problems that arise in various engineering design, network distribution, and location-allocation contexts. These problems generally have nonconvex polynomial objective functions and constraints, involving terms of mixed-sign coefficients (as in signomial geometric programs) that have rational exponents on variables. For such problems, we develop an extension of the Reformulation-Linearization Technique (RLT) to generate linear programming relaxations that are embedded within a branch-and-bound algorithm. Suitable branching or partitioning strategies are designed for which convergence to a global optimal solution is established. The procedure is illustrated using a numerical example, and several possible extensions and algorithmic enhancements are discussed.  相似文献   

10.
The low-rank semidefinite programming problem LRSDPr is a restriction of the semidefinite programming problem SDP in which a bound r is imposed on the rank of X, and it is well known that LRSDPr is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDPr and prove the optimal convergence of a slight variant of the successful, yet experimental, algorithm of Burer and Monteiro [5], which handles LRSDPr via the nonconvex change of variables X=RRT. In addition, for particular problem classes, we describe a practical technique for obtaining lower bounds on the optimal solution value during the execution of the algorithm. Computational results are presented on a set of combinatorial optimization relaxations, including some of the largest quadratic assignment SDPs solved to date.This author was supported in part by NSF Grant CCR-0203426.This author was supported in part by NSF Grants CCR-0203113 and INT-9910084 and ONR grant N00014-03-1-0401.  相似文献   

11.
In this paper, we propose a branch-and-bound algorithm for finding a global optimal solution for a nonconvex quadratic program with convex quadratic constraints (NQPCQC). We first reformulate NQPCQC by adding some nonconvex quadratic constraints induced by eigenvectors of negative eigenvalues associated with the nonconvex quadratic objective function to Shor’s semidefinite relaxation. Under the assumption of having a bounded feasible domain, these nonconvex quadratic constraints can be further relaxed into linear ones to form a special semidefinite programming relaxation. Then an efficient branch-and-bound algorithm branching along the eigendirections of negative eigenvalues is designed. The theoretic convergence property and the worst-case complexity of the proposed algorithm are proved. Numerical experiments are conducted on several types of quadratic programs to show the efficiency of the proposed method.  相似文献   

12.
半定规划的近似中心投影法   总被引:2,自引:1,他引:2  
何炳生 《计算数学》1998,20(2):175-176
1.引言半定规划问题标准形的数学形式是这里C,AIEIR”””及变量XEIRn“”为对称矩阵,Tr(·)表示矩阵的迹,用符号>0和三0分别表示矩阵正定和半正定.由于半定规划在控制论,结构优化,组合优化方面有重要应用[1,3,16,17]以及线性规划内点法取得的巨大成就[7],将线性规划的内点法推广到半定规划上,是数学规划领域内近年来受到重视的一个研究课题.线性规划内点法中的势函数下降法[10,16]原始对偶中心路径跟踪法[2,4,8,9,11。15]已经先后被推广到半定规划上.ROOS-Visl近似中心法则是求解线性规划的另一类内…  相似文献   

13.
When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The complexity of the SCTSP is open, but conjectured to be NP-hard, and we compare different lower bounds on the optimal value that may be computed in polynomial time. We derive a new linear programming (LP) relaxation of the SCTSP from the semidefinite programming (SDP) relaxation in [E. de Klerk, D.V. Pasechnik, R. Sotirov, On semidefinite programming relaxation of the traveling salesman problem, SIAM Journal of Optimization 19 (4) (2008) 1559-1573]. Further, we discuss theoretical and empirical comparisons between this new bound and three well-known bounds from the literature, namely the Held-Karp bound [M. Held, R.M. Karp, The traveling salesman problem and minimum spanning trees, Operations Research 18 (1970) 1138-1162], the 1-tree bound, and the closed-form bound for SCTSP proposed in [J.A.A. van der Veen, Solvable cases of TSP with various objective functions, Ph.D. Thesis, Groningen University, The Netherlands, 1992].  相似文献   

14.
We consider a recent branch-and-bound algorithm of the authors for nonconvex quadratic programming. The algorithm is characterized by its use of semidefinite relaxations within a finite branching scheme. In this paper, we specialize the algorithm to the box-constrained case and study its implementation, which is shown to be a state-of-the-art method for globally solving box-constrained nonconvex quadratic programs. S. Burer was supported in part by NSF Grants CCR-0203426 and CCF-0545514.  相似文献   

15.
Probabilistically constrained quadratic programming (PCQP) problems arise naturally from many real-world applications and have posed a great challenge in front of the optimization society for years due to the nonconvex and discrete nature of its feasible set. We consider in this paper a special case of PCQP where the random vector has a finite discrete distribution. We first derive second-order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation for the problem via a new Lagrangian decomposition scheme. We then give a mixed integer quadratic programming (MIQP) reformulation of the PCQP and show that the continuous relaxation of the MIQP is exactly the SOCP relaxation. This new MIQP reformulation is more efficient than the standard MIQP reformulation in the sense that its continuous relaxation is tighter than or at least as tight as that of the standard MIQP. We report preliminary computational results to demonstrate the tightness of the new convex relaxations and the effectiveness of the new MIQP reformulation.  相似文献   

16.
We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than those gotten by SDP. The framework allows one to choose a block-diagonal structure for the mixed SOCP-SDP, which in turn allows one to control the speed and bound quality. For a fixed block-diagonal structure, we also introduce a procedure to improve the bound quality without increasing computation time significantly. The effectiveness of our framework is illustrated on a large sample of QCQPs from various sources.  相似文献   

17.
The Lovász theta function of a graph is a well-known upper bound on the stability number. It can be computed efficiently by solving a semidefinite program (SDP). Actually, one can solve either of two SDPs, one due to Lovász and the other to Grötschel et al. The former SDP is often thought to be preferable computationally, since it has fewer variables and constraints. We derive some new results on these two equivalent SDPs. The surprising result is that, if we weaken the SDPs by aggregating constraints, or strengthen them by adding cutting planes, the equivalence breaks down. In particular, the Grötschel et al. scheme typically yields a stronger bound than the Lovász one.  相似文献   

18.
We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this approach as a bounding routine in an SDP-based branch-and-bound framework. In case of a convex objective function, the new SDP bound improves the bound given by the continuous relaxation of the problem. Numerical experiments show that our algorithm performs well on various types of non-convex instances.  相似文献   

19.
Existing global optimization techniques for nonconvex quadratic programming (QP) branch by recursively partitioning the convex feasible set and thus generate an infinite number of branch-and-bound nodes. An open question of theoretical interest is how to develop a finite branch-and-bound algorithm for nonconvex QP. One idea, which guarantees a finite number of branching decisions, is to enforce the first-order Karush-Kuhn-Tucker (KKT) conditions through branching. In addition, such an approach naturally yields linear programming (LP) relaxations at each node. However, the LP relaxations are unbounded, a fact that precludes their use. In this paper, we propose and study semidefinite programming relaxations, which are bounded and hence suitable for use with finite KKT-branching. Computational results demonstrate the practical effectiveness of the method, with a particular highlight being that only a small number of nodes are required. This author was supported in part by NSF Grants CCR-0203426 and CCF-0545514.  相似文献   

20.
We consider three known bounds for the quadratic assignment problem (QAP): an eigenvalue, a convex quadratic programming (CQP), and a semidefinite programming (SDP) bound. Since the last two bounds were not compared directly before, we prove that the SDP bound is stronger than the CQP bound. We then apply these to improve known bounds on a discrete energy minimization problem, reformulated as a QAP, which aims to minimize the potential energy between repulsive particles on a toric grid. Thus we are able to prove optimality for several configurations of particles and grid sizes, complementing earlier results by Bouman et al. (2013). The semidefinite programs in question are too large to solve without pre-processing, and we use a symmetry reduction method by Permenter and Parrilo (2020) to make computation of the SDP bounds possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号