首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Existing global optimization techniques for nonconvex quadratic programming (QP) branch by recursively partitioning the convex feasible set and thus generate an infinite number of branch-and-bound nodes. An open question of theoretical interest is how to develop a finite branch-and-bound algorithm for nonconvex QP. One idea, which guarantees a finite number of branching decisions, is to enforce the first-order Karush-Kuhn-Tucker (KKT) conditions through branching. In addition, such an approach naturally yields linear programming (LP) relaxations at each node. However, the LP relaxations are unbounded, a fact that precludes their use. In this paper, we propose and study semidefinite programming relaxations, which are bounded and hence suitable for use with finite KKT-branching. Computational results demonstrate the practical effectiveness of the method, with a particular highlight being that only a small number of nodes are required. This author was supported in part by NSF Grants CCR-0203426 and CCF-0545514.  相似文献   

2.
This paper considers the solution of nonconvex polynomial programming problems that arise in various engineering design, network distribution, and location-allocation contexts. These problems generally have nonconvex polynomial objective functions and constraints, involving terms of mixed-sign coefficients (as in signomial geometric programs) that have rational exponents on variables. For such problems, we develop an extension of the Reformulation-Linearization Technique (RLT) to generate linear programming relaxations that are embedded within a branch-and-bound algorithm. Suitable branching or partitioning strategies are designed for which convergence to a global optimal solution is established. The procedure is illustrated using a numerical example, and several possible extensions and algorithmic enhancements are discussed.  相似文献   

3.
We present a new approach, requiring the solution of a SemiDefinite Program, for decomposing the Hessian of a nonseparable mixed-integer quadratic problem to permit using perspective cuts to improve its continuous relaxation bound. The new method favorably compares with a previously proposed one requiring a minimum eigenvalue computation.  相似文献   

4.
Many combinatorial optimization problems can be modelled as polynomial-programming problems in binary variables that are all 0-1 or ±1. A sufficient condition under which a common method for obtaining semidefinite-programming relaxations of the two models of the same problem gives equivalent relaxations is established.  相似文献   

5.
In this paper, we propose to enhance Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations for polynomial programming problems by developing cutting plane strategies using concepts derived from semidefinite programming. Given an RLT relaxation, we impose positive semidefiniteness on suitable dyadic variable-product matrices, and correspondingly derive implied semidefinite cuts. In the case of polynomial programs, there are several possible variants for selecting such particular variable-product matrices on which positive semidefiniteness restrictions can be imposed in order to derive implied valid inequalities. This leads to a new class of cutting planes that we call v-semidefinite cuts. We explore various strategies for generating such cuts, and exhibit their relative effectiveness towards tightening the RLT relaxations and solving the underlying polynomial programming problems in conjunction with an RLT-based branch-and-cut scheme, using a test-bed of problems from the literature as well as randomly generated instances. Our results demonstrate that these cutting planes achieve a significant tightening of the lower bound in contrast with using RLT as a stand-alone approach, thereby enabling a more robust algorithm with an appreciable reduction in the overall computational effort, even in comparison with the commercial software BARON and the polynomial programming problem solver GloptiPoly.  相似文献   

6.
In this paper we study semidefinite programming (SDP) models for a class of discrete and continuous quadratic optimization problems in the complex Hermitian form. These problems capture a class of well-known combinatorial optimization problems, as well as problems in control theory. For instance, they include the MAX-3-CUT problem where the Laplacian matrix is positive semidefinite (in particular, some of the edge weights can be negative). We present a generic algorithm and a unified analysis of the SDP relaxations which allow us to obtain good approximation guarantees for our models. Specifically, we give an -approximation algorithm for the discrete problem where the decision variables are k-ary and the objective matrix is positive semidefinite. To the best of our knowledge, this is the first known approximation result for this family of problems. For the continuous problem where the objective matrix is positive semidefinite, we obtain the well-known π /4 result due to Ben-Tal et al. [Math Oper Res 28(3):497–523, 2003], and independently, Zhang and Huang [SIAM J Optim 16(3):871–890, 2006]. However, our techniques simplify their analyses and provide a unified framework for treating those problems. In addition, we show for the first time that the gap between the optimal value of the original problem and that of the SDP relaxation can be arbitrarily close to π /4. We also show that the unified analysis can be used to obtain an Ω(1/ log n)-approximation algorithm for the continuous problem in which the objective matrix is not positive semidefinite. This research was supported in part by NSF grant DMS-0306611.  相似文献   

7.
Semidefinite programs are a class of optimization problems that have been studied extensively during the past 15 years. Semidefinite programs are naturally related to linear programs, and both are defined using deterministic data. Stochastic programs were introduced in the 1950s as a paradigm for dealing with uncertainty in data defining linear programs. In this paper, we introduce stochastic semidefinite programs as a paradigm for dealing with uncertainty in data defining semidefinite programs.The work of this author was supported in part by the U.S. Army Research Office under Grant DAAD 19-00-1-0465. The material in this paper is part of the doctoral dissertation of this author in preparation at Washington State University.  相似文献   

8.
Disjunctive Programs can often be transcribed as reverse convex constrained problems with nondifferentiable constraints and unbounded feasible regions. We consider this general class of nonconvex programs, called Reverse Convex Programs (RCP), and show that under quite general conditions, the closure of the convex hull of the feasible region is polyhedral. This development is then pursued from a more constructive standpoint, in that, for certain special reverse convex sets, we specify a finite linear disjunction whose closed convex hull coincides with that of the special reverse convex set. When interpreted in the context of convexity/intersection cuts, this provides the capability of generating any (negative edge extension) facet cut. Although this characterization is more clarifying than computationally oriented, our development shows that if certain bounds are available, then convexity/intersection cuts can be strengthened relatively inexpensively.  相似文献   

9.
The formulation of interior point algorithms for semidefinite programming has become an active research area, following the success of the methods for large-scale linear programming. Many interior point methods for linear programming have now been extended to the more general semidefinite case, but the initialization problem remained unsolved.In this paper we show that the initialization strategy of embedding the problem in a self-dual skew-symmetric problem can also be extended to the semidefinite case. This method also provides a solution for the initialization of quadratic programs and it is applicable to more general convex problems with conic formulation.  相似文献   

10.
We present a unified analysis for a class of long-step primal-dual path-following algorithms for semidefinite programming whose search directions are obtained through linearization of the symmetrized equation of the central pathH P (XS) [PXSP –1 + (PXSP –1) T ]/2 = I, introduced by Zhang. At an iterate (X,S), we choose a scaling matrixP from the class of nonsingular matricesP such thatPXSP –1 is symmetric. This class of matrices includes the three well-known choices, namely:P = S 1/2 andP = X –1/2 proposed by Monteiro, and the matrixP corresponding to the Nesterov—Todd direction. We show that within the class of algorithms studied in this paper, the one based on the Nesterov—Todd direction has the lowest possible iteration-complexity bound that can provably be derived from our analysis. More specifically, its iteration-complexity bound is of the same order as that of the corresponding long-step primal-dual path-following algorithm for linear programming introduced by Kojima, Mizuno and Yoshise. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Corresponding author.This author's research is supported in part by the National Science Foundation under grants INT-9600343 and CCR-9700448 and the Office of Naval Research under grant N00014-94-1-0340.This author's research was supported in part by DOE DE-FG02-93ER25171-A001.  相似文献   

11.
General successive convex relaxation methods (SRCMs) can be used to compute the convex hull of any compact set, in an Euclidean space, described by a system of quadratic inequalities and a compact convex set. Linear complementarity problems (LCPs) make an interesting and rich class of structured nonconvex optimization problems. In this paper, we study a few of the specialized lift-and-project methods and some of the possible ways of applying the general SCRMs to LCPs and related problems.  相似文献   

12.
This study deals with the performance of projective interior point methods for linear semidefinite program. We propose a modification in the initialization phases of the method in order to reduce the computation time.This purpose is confirmed by numerical experiments showing the efficiency which are presented in the last section of the paper.  相似文献   

13.
In this paper we study a class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.  相似文献   

14.
A counterexample is given to show that a previously proposed sufficient condition for a local minimum of a class of nonconvex quadratic programs is not correct. This class of problems arises in combinatorial optimization. The problem with the original proof is pointed out. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

15.
We consider the outer approximation problem of finding a minimum radius ball enclosing a given intersection of at most n − 1 balls in . We show that if the aforementioned intersection has a nonempty interior, then the problem reduces to minimizing a convex quadratic function over the unit simplex. This result is established by using convexity and representation theorems for a class of quadratic mappings. As a byproduct of our analysis, we show that a class of nonconvex quadratic problems admits a tight semidefinite relaxation.  相似文献   

16.
17.
We study ellipsoid bounds for the solutions of polynomial systems of equalities and inequalities. The variable μ can be considered as parameters perturbing the solution x. For example, bounding the zeros of a system of polynomials whose coefficients depend on parameters is a special case of this problem. Our goal is to find minimum ellipsoid bounds just for x. Using theorems from real algebraic geometry, the ellipsoid bound can be found by solving a particular polynomial optimization problem with sums of squares (SOS) techniques. Some numerical examples are also given.  相似文献   

18.
This paper studies the asymptotic behavior of the central path (X(ν),S(ν),y(ν)) as ν↓0 for a class of degenerate semidefinite programming (SDP) problems, namely those that do not have strictly complementary primal-dual optimal solutions and whose “degenerate diagonal blocks” of the central path are assumed to satisfy We establish the convergence of the central path towards a primal-dual optimal solution, which is characterized as being the unique optimal solution of a certain log-barrier problem. A characterization of the class of SDP problems which satisfy our assumptions are also provided. It is shown that the re-parametrization t>0→(X(t4),S(t4),y(t4)) of the central path is analytic at t=0. The limiting behavior of the derivative of the central path is also investigated and it is shown that the order of convergence of the central path towards its limit point is Finally, we apply our results to the convex quadratically constrained convex programming (CQCCP) problem and characterize the class of CQCCP problems which can be formulated as SDPs satisfying the assumptions of this paper. In particular, we show that CQCCP problems with either a strictly convex objective function or at least one strictly convex constraint function lie in this class.This author was supported in part by CAPES and PRONEX-Otimização (FAPERJ/CNPq).This author was supported in part by FUNAPE/UFG, CAPES, PADCT-CNPq and PRONEX-Otimização (FAPERJ/CNPq).This author was supported in part by NSF Grants CCR-9902010, CCR-0203113 and INT-9910084 and ONR grant N00014-03-1-0401.Mathematics Subject Classification (1991): 90C20, 90C22, 90C25, 90C30, 90C33, 90C45, 90C51  相似文献   

19.
The author (1992, 1993) earlier studied the equivalence of a class of 0–1 quadratic programs and their relaxed problems. Thus, a class of combinatorial optimization problems can be solved by solving a class of nonconvex quadratic programs. In this paper, a necessary and sufficient condition for local minima of this class of nonconvex quadratic programs is given; this will be the foundation for study of algorithms.Research supported by Huo Yingdong Educational Foundation '93.  相似文献   

20.
In this paper, we introduce a transformation that converts a class of linear and nonlinear semidefinite programming (SDP) problems into nonlinear optimization problems. For those problems of interest, the transformation replaces matrix-valued constraints by vector-valued ones, hence reducing the number of constraints by an order of magnitude. The class of transformable problems includes instances of SDP relaxations of combinatorial optimization problems with binary variables as well as other important SDP problems. We also derive gradient formulas for the objective function of the resulting nonlinear optimization problem and show that both function and gradient evaluations have affordable complexities that effectively exploit the sparsity of the problem data. This transformation, together with the efficient gradient formulas, enables the solution of very large-scale SDP problems by gradient-based nonlinear optimization techniques. In particular, we propose a first-order log-barrier method designed for solving a class of large-scale linear SDP problems. This algorithm operates entirely within the space of the transformed problem while still maintaining close ties with both the primal and the dual of the original SDP problem. Global convergence of the algorithm is established under mild and reasonable assumptions. Received: January 5, 2000 / Accepted: October 2001?Published online February 14, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号