首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Micro/nano-porous polymeric material is considered a unique industrial material due to its extremely low thermal conductivity, low density, and high surface area. Therefore, it is necessary to establish an accurate thermal conductivity prediction model suiting their applicable conditions and provide a theoretical basis for expanding their applications. In this work, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models of thermal conductivity are introduced separately according to the conductive and radiative thermal conductivity models. In addition, the thermal conduction part is divided into the gaseous thermal conductivity model, solid thermal conductivity model and gas–solid coupling model. Finally, it is concluded that, compared with other porous materials, there are few studies on heat transfer of micro/ nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effects at the micro/nanoscale. In particular, the following aspects of porous polymers still need to be further studied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at the nanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studies would provide a more accurate prediction of thermal conductivity and a broader application in energy conversion and storage systems.  相似文献   

2.
林长鹏  刘新健  饶中浩 《物理学报》2015,64(8):83601-083601
采用分子动力学方法模拟了纳米金属铝在粒径为0.8-3.2 nm 时的熔点、密度和声子热导率的变化, 研究了粒径为1.6 nm的铝纳米颗粒的密度、比热和声子热导率随温度的变化. 采用原子嵌入势较好地模拟了纳米金属铝的热物性及相变行为, 根据能量-温度曲线和比热容-温度曲线对铝纳米颗粒的相变温度进行了研究, 并利用表面能理论、尺寸效应理论对铝纳米颗粒熔点的变化进行了分析. 随着纳米粒径的不断增大, 铝纳米颗粒的熔点呈递增状态, 当粒径在2.2-3.2 nm时, 熔点的增幅减缓, 但仍处于递增趋势. 随着纳米粒径的增大, 铝纳米颗粒的密度呈单调递减, 热导率则呈线性单调递增, 且热导率的变化情况符合声子理论. 随着温度的升高, 粒径为1.6 nm的铝纳米颗粒的密度、热导率均减小. 该模拟从微观原子角度对纳米材料的热物性进行了研究, 对设计基于铝纳米颗粒的相变材料具有指导意义.  相似文献   

3.
We analyzed stress and heat transfer in attached planar waveguides. Die attaching adhesives were known to be the key to avoiding stress buildup in and dissipating heat from waveguides. When adhesives have a shear modulus of less than 1 MPa and a thermal conductivity of 2 w/mk, a 0.1-0.2-mm-thick layer of adhesive can eliminate stress-related effects and efficiently dissipate 30-50 mW/mm2 of heat, even if aluminum is used as a substrate. Supersoft thermal conductive adhesives were thus developed and used to attach 60-mm-long AWG dies to aluminum with excellent results.  相似文献   

4.
采用稳态平板法测量不良导体的导热系数时,关键是得到稳态时不良导体的传热速率。根据稳态时传热速率与散热铝盘的散热速率相等,可以测定自然冷却过程中,稳态时散热铝盘温度T2所对应的冷却速率。基于Matlab软件,分析并绘制曲线直观反映出温度、时间、冷却速率三者之间的关系,用拟合法研究了不良导体导热系数随温度变化的关系。  相似文献   

5.
高压热处理对铝青铜热物理性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在5 GPa压力下对铝青铜进行750℃、保温15 min的高压热处理,对高压热处理前后铝青铜的电导率以及25~600℃温度范围内的热扩散系数、热容和热导率进行测试,结合显微组织的观察结果,探讨了高压热处理对铝青铜热物理性能的影响。研究表明:高压热处理能增大铝青铜的热扩散系数,减小热容;对热导率而言,温度低于400℃时高压热处理能增大铝青铜的热导率,而温度高于400℃时高压热处理能减小铝青铜的热导率。分析认为,产生变化的主要原因是高压热处理使铝青铜的微观组织发生了变化。  相似文献   

6.
《Solid State Ionics》1987,22(4):263-284
There have been various attempts to measure thermal conductivity of relatively low conductive materials such as oxides and nitrides, at high temperature. However, their accuracy was not sufficient to allow quantitative discussion mainly because of experimental difficulties, particularly at sample temperature above 1000 K, for several reasons. For example, the radiative heat flow is known to play a significant role at higher temperature, but the separation of such a component from the measured heat flows has only been established recently. An attempt will be made in this paper to review current information on thermal conductivity measurement of oxide melts at high temperature above 1000 K. Thus, this review is primarily concerned with the several methods for determining thermal conductivity of high temperature melts including their respective merits and demerits. A new laser-flash method proposed in the early 1960's has received much attention for determining thermal conductivity of high temperature melts and is an even better technique than the conventional techniques such as the hot-wire method. Although some advantages of the laser-flash method are readily apparent, major progress has been obtained only in the last few years and new information is now available. Therefore, it will be the authors' intention to provide the principle and the new data processing for the laser-flash method, including some selected examples of its application to determining thermal conductivity of oxide melts at high temperature. The relevant significant quantities such as the radiative heat transfer coefficient are also discussed, in order to facilitate the understanding of the present status of fundamentals and the powerful link between physical constants such as the reflective index of sample material and the required formulae for determining thermal conductivity of high temperature melts by the laser-flash method.  相似文献   

7.
Numerical simulation is performed for heat transfer in a heat distributer of a thermoelectric cooling system, which is located between the heat-loaded element and the thermoelectric module, for matching their sizes and for heat flux equalization. The dependences of the characteristic values of temperature and thermal resistance of the copper and aluminum heat distributer on its thickness and on the size of the heatloaded element. Comparative analysis is carried out for determining the effect of the thermal conductivity of the material and geometrical parameters on the heat resistance. The optimal thickness of the heat distributer depending on the size of the heat-loaded element is determined.  相似文献   

8.
铜基类金刚石膜功能梯度材料作为散热材料的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王静  刘贵昌  李红玲  侯保荣 《物理学报》2012,61(5):58102-058102
随着电子技术、信息产业的发展, Cu在微型散热材料、电子封装材料上应用日益广泛. Cu在应用过程中存在强度低、易氧化、易磨损等缺点. 采用等离子体复合沉积技术, 在铜基体上制备了Ti/TiC/DLC功能梯度材料, 改善铜基体与美金刚石(DLC)膜的结合力, 强化了铜的机械性能. 瞬态热反射法检测结果表明, DLC功能梯度材料不会影响铜基体的散热效果.  相似文献   

9.
高分子聚合物基热界面材料对高密度集成电路的散热起到至关重要的作用。本文主要阐述 高分子聚合物热导率的理论及实验研究进展,重点介绍近年来关于调控高分子聚合物热导率的相 关工作。此外,本文还对高分子聚合物热输运调控的发展趋势进行了展望,讨论目前研究中尚未 解决的问题及瓶颈。  相似文献   

10.
孙健  刘伟强 《物理学报》2012,61(17):174401-174401
针对高超声速飞行器工作时头锥恶劣的热环境,为了保证飞行器头锥的尖锐外形, 提出疏导式热防护结构,利用内置高导热碳材料结构为飞行器头锥提供热防护. 采用流固耦合方法对头锥疏导式防热结构进行了分析,验证了头锥内置高导热碳材料具有较好防热效果, 其中来流马赫数(Ma)为9时头锥前缘壁面最高温度下降了21.9%,尾部最低温度升高了15.2%, 实现了热流由高温区向低温区的转移,削弱了头锥的热载荷,强化了头锥的热防护能力. 本文对外蒙皮结构参数、材料参数以及内部高导热碳材料导热率对头锥热防护性能的影响进行了分析, 其中头锥最高温度随着蒙皮材料导热系数的增加而降低到一个稳定值; 随着蒙皮材料表面黑度的增加而降低;随着蒙皮厚度的增加而升高;随着高导热碳材料导热系数的 增加而呈抛物线下降.  相似文献   

11.
刘英光  张士兵  韩中合  赵豫晋 《物理学报》2016,65(10):104401-104401
用热压烧结法制备得到纳晶铜块体. 用激光法测定了不同温度下制备得到的纳晶铜块体的热导率, 并建立卡皮查热阻模型对样品热导率进行模拟. 通过对比, 模拟结果与实验数据基本一致. 随着热压烧结温度的升高, 纳晶铜晶粒尺寸也随之增大. 在900和700 ℃其热导率分别达到了最大和最小值且所对应的热导率分别为200.63和233.37 W·m-1·K-1, 各占粗晶铜块体热导率的53.4%和60.6%. 验证了纳晶铜热导率在一定的晶粒尺寸范围内具有尺寸效应, 随着晶粒尺寸的减小, 热导率逐渐减小.  相似文献   

12.
导热系数的分子动力学模拟研究及相关问题的探讨   总被引:7,自引:1,他引:7  
对于采用分子动力学方法研究导热系数的背景、研究现状及存在的问题进行了综述和分析。总结了通过分子动力学模拟方法求得导热系数的物理模型和基本算法。讨论了目前在微尺度导热问题的研究中引入分子动力学模拟方法需要考察的影响因素和几个重要问题。  相似文献   

13.
Nonmetallic crystals with high thermal conductivity   总被引:2,自引:0,他引:2  
Nonmetallic crystals transport heat primarily by phonons at room temperature and below. There are only a few nonmetallic crystals which can be classed as high thermal conductivity solids, in the sense of having a thermal conductivity of > 1 W/cmK at 300K. Thermal conductivity measurements on natural and synthetic diamond, cubic BN, BP and AIN confirm that all of them are high thermal conductivity solids. Studies have been made of the effect on the thermal conductivity of nitrogen impurities in diamond, and oxygen impurities in AIN. The nitrogen impurities scatter phonons mostly from the strain field, the oxygen impurities scatter phonons mostly from the mass defects caused by aluminum vacancies. Pure A1N as well as pure SiC, BeO, BP and BeS conduct heat almost as well as does copper at room temperature, while pure natural and synthetic diamonds conduct heat five times better than copper.All of the nonmetallic solids that are known to possess high thermal conductivity have either the diamond-like, boron carbide, or graphite crystal structure. There are twelve different diamond-like crystals, a few boron carbide-type crystals, and two graphite structure crystals that have high thermal conductivity. Analyses of the rock-salt, fluorite, quartz, corundum and other structures show no candidates for this class. The four rules for finding crystals with high thermal conductivity are that the crystal should have (1) low atomic mass, (2) strong bonding, (3) simple crystal structure, and (4) low anharmonicity. The prime example of such a solid is diamond, which has the highest known thermal conductivity at 300K.  相似文献   

14.
导热优化:热耗散与最优导热系数场   总被引:6,自引:1,他引:6  
本文讨论了通过重新布置场内的导热系数分布来强化热传导的导热优化问题。针对边界上传热量一定的任意几何区域的稳态导热,在全场的导热系数积分为定值的条件下,以最小热耗散作为目标,利用变分方法导出了导热优化的基本准则;导热系数与局部热流密度成正比。该准则指导下的导热优化过程可获得热耗散最小的导热系数分布。实例证明了该方法是有效且合理的。  相似文献   

15.
Nanofluids present a new type of dispersed fluids consisting of a carrier fluid and solid nanoparticles. Unusual properties of nanofluids, particularly high thermal conductivity, make them eminently suitable for many thermophysical applications, e.g., for cooling of equipment, designing of new heat energy transportation and production systems and so on. This requires a systematic study of heat exchange properties of nanofluids. The present paper contains the measurement results for the heat transfer coefficient of the laminar and turbulent flow of nanofluids on the basis of distilled water with silica, alumina and copper oxide particles in a minichannel with circular cross section. The maximum volume concentration of particles did not exceed 2%. The dependence of the heat transfer coefficient on the concentration and size of nanoparticles was studied. It is shown that the use of nanofluids allows a significant increase in the heat transfer coefficient as compared to that for water. However, the obtained result strongly depends on the regime of flow. The excess of the heat transfer coefficient in the laminar flow is only due to an increase in the thermal conductivity coefficient of nanofluid, while in the turbulent flow the obtained effect is due to the ratio between the viscosity and thermal conductivity of nanofluid. The viscosity and thermal conductivity of nanofluids depend on the volume concentration of nanoparticles as well as on their size and material and are not described by classical theories. That is why the literature data are diverse and contradictory; they do not actually take into account the influence of the mentioned factors (size and material of nanoparticles). It has been shown experimentally and by a molecular dynamics method that the nanofluid viscosity increases while the thermal conductivity decreases with the decreasing dispersed particle size. It is found experimentally for the first time that the nanofluid viscosity coefficient depends on the particle material. The higher is the density of particles, the higher is the thermal conductivity coefficient of nanofluid.  相似文献   

16.
Thermoelectric power generators require high-efficiency thermoelectric materials to transform waste heat into usable electrical energy. An efficient thermoelectric material should have high Seebeck coefficient and excellent electrical conductivity as well as low thermal conductivity. Graphene, the first truly 2D nanomaterial, exhibits unique properties which suit it for use in thermoelectric power generators, but its application in thermoelectrics is limited by the high thermal conductivity and low Seebeck coefficient resulting from its gapless spectrum. However, with the possibility of modification of graphene's band structure to enhance Seebeck coefficient and the reduction of its thermal conductivity, it is an exciting prospect for application in thermoelectric power generation. This article examines the electronic, optical, thermal, and thermoelectric properties of graphene systems. The factors that contribute to these material properties in graphene systems like charge carriers scattering mechanisms are discussed. A salient aspect of this article is a synergistic perspective on the reduction of thermal conductivity and improvement of Seebeck coefficient of graphene for a higher thermoelectric energy conversion efficiency. In this regard, the effect of graphene nanostructuring and doping, forming of structural defects, as well as graphene integration into a polymer matrix on its thermal conductivity and Seebeck coefficient is elucidated.  相似文献   

17.
Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace's equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat.  相似文献   

18.
在冰蓄冷空调系统中 ,载冷剂乙二醇溶液的腐蚀性对金属换热管道工作的长期稳定性产生严重影响 ,文中提出采用新型导热塑料来代替传统的金属管道。为了论证导热塑料的可行性 ,对在冰盘管蓄冰槽的蓄冰过程中 ,导热塑料的热导率对其传热性能的影响进行研究。建立了盘管蓄冰过程的物理数学模型 ,求出蓄冰时间随盘管材料热导率的变化曲线 ,并对三种盘管材料对盘管传热性能的影响作出比较 ,认为新型导热塑料制成的冰盘管具有较大的优越性 ,可在工程实际中采用。  相似文献   

19.
对于种子干燥方面的研究,大多是针对其宏观传热传质即干燥动力学方面。本文采用热成象技术对单颗蚕豆种子的传热过程进行了研究,用实验求解导热方程反问题的方法计算出不同含水率下单颗种子的导热系数,对种子在非稳态下内部温度场进行了测试与分析.研究结果表明,在含水率小于 20%时,其导热系数随着含水率的增加而增大,当含水率大于 25%时则表现出较强的非均质性和非稳态性。对单颗蚕豆种子内部温度场测定而得到的种子热剖面温度分布表明,种子内部存在温度梯度其热扩散具有均匀性,同时反映出种皮传热热阻的存在。这些结果对于深入研究种子内部的传热传质机理,具有重要的实际意义。  相似文献   

20.
去除铝基板的大功率LED热分析   总被引:2,自引:0,他引:2       下载免费PDF全文
陈建龙  文尚胜  姚日晖  汪峰 《发光学报》2012,33(12):1362-1367
提出一种大功率LED免铝基板封装方式,采用ANSYS有限元热分析软件对传统的铝基板封装和免铝基板封装的LED进行模拟对比分析。模拟结果表明:两种封装结构的LED,其最高温度均出现在LED芯片处;对于单颗功率1 W、3颗功率1 W和单颗功率3 W的器件,由于有效地简化了散热通道、大幅度降低了总热阻,采用免铝基板结构的最高温度分别降低了6.436,9.468,19.309 ℃。传统的铝基板封装即使选用热导率高达200 W/(m·K)的基板,其散热效果依旧略逊于免铝基板封装结构,且随着LED功率的增大,免铝基板的新型封装结构散热优势更加明显。本文的研究为解决大功率LED的散热问题和光色稳定性问题提供了一种新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号