首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Towards a thin films electrochromic device using NASICON electrolyte   总被引:1,自引:0,他引:1  
The optimisation of the morphology of WO3 thin films allowed a more efficient electrochromic colouring using Na+ ions than H+ ones. Therefore, sodium superionic conductor (Na3Zr2Si2PO12, NASICON) films may be used as electrolyte in inorganic electrochromic devices. In this paper, the structure, chemical composition, morphology and electrochromic properties of WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were studied to develop a novel type of electrochromic device. WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were deposited using reactive magnetron sputtering of tungsten, zinc and aluminium and Zr–Si and Na3PO4 targets, respectively. For transparent conductive oxide coatings, a correlation was established between the deposition parametres and the film’s structure, transmittance and electrical resistivity. Classical sputtering methods were not suitable for the deposition of NASICON films on large surface with homogenous composition. On the other hand, the use of high-frequency pulsed direct current generators allowed the deposition of amorphous films that crystallised after thermal annealing upon 700 °C in the Na3Zr2Si2PO12 structure. Amorphous films exhibited ionic conductivity close to 2 × 10−3 S cm−1. Finally, preliminary results related to the electrochromic performance of NASICON, WO3 and indium tin oxide devices were given. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, France, Sept. 9–15, 2007.  相似文献   

2.
In the binary system (1?x)Li2SO4xNa2SO4, the solid–solid phase transitions and energy storage properties of Li2SO4, Na2SO4, the binary compound LiNaSO4 and two eutectoids (E1: 0.726Li2SO4–0.274Na2SO4; E2: 0.03Li2SO4–0.97Na2SO4) were investigated by X-ray diffraction and differential scanning calorimetry. Li2SO4 has a solid–solid phase transition at 578 °C with the transition enthalpy 252 J g?1. The binary compound LiNaSO4 gives a slightly lower enthalpy value, 214 J g?1 and its transition temperature is clearly reduced to 514 °C. The transition enthalpy of the eutectoid E1 is maintained to 177 J g?1 and its transition temperature is further reduced to 474 °C. Li2SO4, LiNaSO4 and the eutectoid E1 are applicable phase transition materials because of their large transition enthalpies. The enthalpies of Na2SO4 and the eutectoid E2 are not very high (~45 J g?1), but their transition temperatures are quite low (~250 °C); thus their transition properties may be applied at such low temperatures.  相似文献   

3.
Oxygen-deficient (OD) and nearly stoichiometric (NST) ZnO and In2O3 nanowires/nanoparticles were synthesized by chemical vapor deposition on Au-coated silicon substrates. The OD ZnO and OD In2O3 nanowires were synthesized at 750 and 950°C, respectively, using Ar flow at ambient pressure. A mixture of flowing Ar and O2 was used for synthesizing NST ZnO nanowires and NST In2O3 nanoparticles. Growth of OD ZnO nanowires and NST In2O3 nanoparticles was found to be via a vapor–solid (VS) mechanism and the growth of NST ZnO nanowires was via a vapor–liquid–solid mechanism (VLS). However, it was uncertain whether the growth of OD In2O3 nanowires was via a VS or VLS mechanism. The optical constants, thickness and surface roughness of the prepared nanostructured films were determined by spectroscopic ellipsometry measurements. A three-layered model was used to fit the calculated data to the experimental ellipsometric spectra. The refractive index of OD ZnO, NST ZnO nanowires and NST In2O3 nanoparticles films displayed normal dispersion behavior. The calculated optical band gap values for OD ZnO, NST ZnO, OD In2O3 nanowires and NST In2O3 nanoparticles films were 3.03, 3.55, 2.81 and 3.52?eV, respectively.  相似文献   

4.
LiMn2O4 thin films were deposited by reactive pulsed laser deposition technique and studied the microstructural and electrical properties of the films. The LiMn2O4 thin films deposited in an oxygen partial pressure of 100 mTorr and at a substrate temperature of 573 K from a lithium rich target were found to be nearly stoichiometric. The films exhibited predominantly (111) orientation representing the cubic spinel structure with Fd3m symmetry. The intensity of (111) peak increased and a slight shift in the peak position was observed with the increase of substrate temperature. The lattice parameter increased from 8.117 to 8.2417 Å with the increase of substrate temperature from 573 to 873 K. The electrical conductivity of the films is observed to be a strong function of temperature. The evaluated activation energy for the films deposited at 873 K is 0.64 eV.  相似文献   

5.
We used a metal-organic chemical vapor deposition (MOCVD) method to grow ZnO films on MgAl2O4 (1 1 1) substrate, and succeeded in preparing films with microstructures from well-aligned ZnO nanorods to continuous and dense films by adjusting the ratio of the input rates of oxygen and zinc sources (VI/II). At the growth temperature of 350 °C, the ZnO nanorods were formed under a low flow rate of a zinc precursor. On the other hand, continuous and dense ZnO films were formed under a high flow rate of the zinc precursor. There is a transition zone at medium zinc precursor flow rate, where nanorods transform to dense films. We proved that the height of ZnO nanorods and the thickness of ZnO dense films both increase with zinc flow rate, and are consistent with the mass-transport mechanism for ZnO growth. The XRD spectra of the sample in the transition zone show both (0 0 2) and (1 0 1) peaks, where (1 0 1) peaks are formed only in the transition zone. We consider that there are (0 0 2) and (1 0 1) ZnO grains in the early growth stage of dense ZnO films.  相似文献   

6.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

7.
Optical non destructive evaluation methods, using lasers as the object illumination source, include holographic interferometry. It is widely used to measure stress, strain, and vibration in engineering structures. Double exposure holographic interferometry (DEHI) technique is used to determine thickness and stress of electrodeposited bismuth trisulphide (Bi2S3) thin films for various deposition times. The same is tested for other concentration of the precursors. It is observed that, increase in deposition time, increases thickness of thin film but decreases stress to the substrate. The structural, optical and surface wettability properties of the as deposited films have been studied using X-ray diffraction (XRD), optical absorption and contact angle measurement, respectively. The X-ray diffraction study reveals that the films are polycrystalline with orthorhombic crystal structure. Optical absorption study shows the presence of direct transition with band bap 1.78 eV. The water contact angle measurement shows hydrophobic nature of Bi2S3 thin film surface.  相似文献   

8.
Composite films of TiN/Ni3N/a-Si3N4 were synthesized using the Mather-type plasma focus device with varying numbers of focus deposition shots (5, 15, and 25) at 0° and 10° angular positions. The composition and structural analysis of these films were analyzed by using Rutherford backscattering (RBS) and X-ray diffraction (XRD). Scanning electron microscope and atomic force microscope were used to study the surface morphology of films. XRD patterns confirm the formation of composite TiN/Ni3N/a-Si3N4 films. The crystallite size of TiN (200) plane is 11 and 22 nm, respectively, at 0° and 10° angular positions for same 25 focus deposition shots. Impurity levels and thickness were measured using RBS. Scanning electron microscopy results show the formation of net-like structures for multiple focus shots (5, 15, and 25) at angular positions of 0° and 10°. The average surface roughness of the deposited films increases with increasing focus shots. The roughness of the film decreases at higher angle 10° and the films obtained are smoother as compared with the films deposited at 0° angular positions.  相似文献   

9.
Arsenic trisulphide (As2S3) thin films have been deposited onto stainless steel and fluorine doped tin oxide (FTO) coated glass substrates by electrodeposition technique using arsenic trioxide (As2O3) and sodium thiosulphate (Na2S2O3) as precursors and ethylene diamine tetracetic acid (EDTA) as a complexing agent. Double exposure holographic interferometry (DEHI) technique was used to determine the thickness and stress of As2S3 thin films. It was observed that the thickness of the thin film increases whereas film stress to the substrate decreases with an increase in the deposition time. X-ray diffraction and water contact angle measurements showed polycrystalline and hydrophilic surface respectively. The bandgap energy increases from 1.82 to 2.45 eV with decrease in the film thickness from 2.2148 to 0.9492 μm.  相似文献   

10.
In this paper, porous WO3 films were prepared by anodic oxidation of metallic tungsten (W) films deposited on alumina substrates. The structural and morphological properties of the porous WO3 films were investigated using field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). A large number of cracks appeared on the surface of films after anodization, which makes the films porous. The porous WO3 sensors achieved their maximum response values to NO2 at a low operating temperature of 150 °C. The porous WO3 sensors showed high response values, great stability and fast response-recovery characteristics to different concentration of NO2 gas due to the high specific surface area and special structural and morphological properties.  相似文献   

11.
A novel one‐dimensional electromagnetic nanocomposite of polypyrrole (PPY) containing carbon nanotubes (CNTs)/Ni0.75Zn0.25Fe2O4 was synthesized by an in‐situ polymerization method. The composite was characterized by x‐ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared. The XRD results confirmed that PPY, CNTs, and Ni0.75Zn0.25Fe2O4 coexisted in the composite. The TEM and HRTEM results indicated that PPY coated the surface of the CNTs/Ni0.75Zn0.25Fe2O4 with a thickness of 15–30 nm. The lattice spacings, according to the first main peak of the CNTs, Ni0.75Zn0.25Fe2O4, and PPY, was about 0.34 nm, 0.25 nm, and 0.42 nm, respectively. The FTIR result also indicated that the PPY formed in the composite. A test of magnetic properties indicated that the composite was ferromagnetic with the saturated magnetization of 12.86 electromagnetic units (emu)/g, and the coercive of 127.18 Oersted (Oe).  相似文献   

12.
In order to constrain the Na2CO3–CaCO3–MgCO3 T–X diagram at 6?GPa in addition to the binary and pseudo-binary systems we conducted experiments along the Na2CO3–Ca0.5Mg0.5CO3 join. At 900–1000°C, melting does not occur and isothermal sections are presented by one-, two- and three-phase regions containing Ca-bearing magnesite, aragonite, Na2CO3 (Na2) and Na2(Ca1–0.9Mg0-0.1)3-4(CO3)4-5 (Na2Ca3-4), Na4(Ca1–0.6Mg0–0.4)(CO3)3 (Na4Ca), Na2(Ca0-0.08Mg1–0.92)(CO3)2 (Na2Mg) phases with intermediate compositions. The minimum melting point locates between 1000°C and 1100°C. This point would resemble that of three eutectics: Mgs–Na2Ca3–Na2Mg, Na2Mg–Na2Ca3–Na4Ca or Na2Mg–Na4Ca–Na2, in the compositional interval of [45Na2CO3·55(Ca0.6Mg0.4)CO3]–[60Na2CO3·40Ca0.6Mg0.4CO3]. The liquidus projection has seven primary solidification phase regions for Mgs, Dol, Arg, Na2Ca3, Na4Ca, Na2 and Na2Mg. The results suggest that extraction of Na and Ca from silicate to carbonate components has to decrease minimum melting temperature of carbonated mantle rocks to 1000–1100°C at 6?GPa and yields Na-rich dolomitic melt with a Na# (Na2O/(Na2O?+?CaO?+?MgO))?≥?28?mol%.  相似文献   

13.
TiO2 thin films were deposited on a glass substrate by the radio frequency magnetron sputtering method, and annealed for 2 h at temperatures of 550°C. Then, 60Co γ rays with different doses were used to irradiate the resulting TiO2 thin films. The surface features of films before and after irradiation were observed by scanning electron microscope (SEM). Simultaneously, the crystal structure and optical properties of films before and after irradiation were studied by X-ray diffraction (XRD), UV–VIS transmission spectrum and Photoluminescence (PL) spectrum, respectively. The SEM analysis shows that the film is smooth with tiny particles on the film surface, and non-crystallization trend was clear after irradiated with γ rays. The XRD results indicated that the structure of the film at the room temperature mainly exists in the form of amorphous and mixed crystal at a sputtering power of 200 W, and non-crystallinity was more obvious after irradiation. Obvious difference can be found for the transmissibility of the irradiated and pre irradiation TiO2 films by the UV-VIS spectra. The color becomes light yellow, and the new absorption edge also appeared at about 430 nm. PL spectra and photocatalysis experiments indicate that the photocatalysis degradation rate of the TiO2 films on methylthionine chloride solution irradiated with the maximum dose can be increased to 90%.  相似文献   

14.
Lead scandium phosphate glasses (PbO-Sc2O3-P2O5) containing different concentrations of tungsten oxide (WO3) ranging from 0 to 5 mol% were prepared. A number of studies, viz. differential thermal analysis (DTA), infrared spectra, optical absorption, and electron spin resonance (ESR) spectra, have been carried out. The results of DTA indicated the highest glass forming ability for the glass containing 5 mol% of WO3. The results of spectroscopic studies have been analyzed in light of different oxidation states of tungsten ions.  相似文献   

15.
Nanoleaf-like Bi2S3 thin films were deposited on indium tin oxide (ITO) glass using Bi(NO3)3 and Na2S2O3 as precursors by a cathodic electrodeposition process. The as-deposited thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and photoluminescence spectrum (PL). The influence of precursor solution mole concentration ratios [Bi(NO3)3]/[Na2S2O3] on the phase compositions, morphologies and photoluminescence properties of the obtained thin films were investigated. Results show that a uniform Bi2S3 thin film with nanoleaf structure can be obtained with the precursor solution concentration ratio [Bi(NO3)3]/[Na2S2O3] = 1:7. The as-prepared thin films exhibit blue-green photoluminescence properties under ultraviolet light excitation. With the increase of concentration ratios [Bi(NO3)3]/[Na2S2O3] in the deposition solution, the crystallizations and PL properties of Bi2S3 thin films are obviously improved.  相似文献   

16.
祁菁  金晶  胡海龙  高平奇  袁保和  贺德衍 《物理学报》2006,55(11):5959-5963
以SiH4,Ar和H2为反应气体,采用射频等离子体化学气相沉积方法在300℃下制备了低温多晶Si薄膜.实验发现,反应气体中H2的比例是影响薄膜结晶质量的重要因素,在适量的H2比例下制备的多晶Si薄膜具有结晶相体积分数高,氢含量低,生长速率快、抗杂质污染等特性. 关键词: 低温多晶Si薄膜 等离子体CVD 4')" href="#">Ar稀释SiH4 2比例')" href="#">H2比例  相似文献   

17.
It was suggested that Na–Mg carbonates might play a substantial role in mantle metasomatic processes through lowering melting temperatures of mantle peridotites. Taking into account that natrite, Na2CO3, eitelite, Na2Mg(CO3)2, and magnesite, MgCO3, have been recently reported from xenoliths of shallow mantle (110–115?km) origin, we performed experiments on phase relations in the system Na2CO3–MgCO3 at 3?GPa and 800–1250°C. We found that the subsolidus assemblages comprise the stability fields of Na-carbonate?+?eitelite and eitelite?+?magnesite with the transition boundary at 50?mol% Na2CO3. The Na-carbonate–eitelite eutectic was established at 900°C and 69?mol% Na2CO3. Eitelite melts incongruently to magnesite and a liquid containing about 55?mol% Na2CO3 at 925?±?25 °C. At 1050 °C, the liquid, coexisting with Na-carbonate, contains 86–88?mol% Na2CO3. Melting point of Na2CO3 was established at 1175?±?25 °C. The Na2CO3 content in the liquid coexisting with magnesite decreases to 31?mol% as temperature increases to 1250°C. According to our data, the Na- and Mg-rich carbonate melt, which is more alkaline than eitelite, can be stable at the P–T conditions of the shallow lithospheric mantle with thermal gradient of 45?mW/m2 corresponding to temperature of 900 °C at 3?GPa.  相似文献   

18.
于鹏飞  崔忠慧  范武刚  郭向欣 《中国物理 B》2013,22(3):38101-038101
As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the mechanism of EC properties,and thus facilitate optimization of device performance,clarification of the correlation between cation storage and transfer properties and the coloration performance is needed.In this study,transparent polycrystalline and amorphous WO3 thin films were deposited on SnO2:F-coated glass substrates by the pulsed laser deposition technique.Investigation into optical transmittance in a wavelength range of 400-800 nm measured at a current density of 130 μA·cm-2 with the applied potential ranging from 3.2 to 2.2 V indicates that polycrystalline films have a larger optical modulation of ~ 30% at 600 nm and a larger coloration switch time of 95 s in the whole wavelength range compared with amorphous films(~ 24% and 50 s).Meanwhile,under the same conditions,polycrystalline films show a larger lithium storage capacity corresponding to a Li/W ratio of 0.5,a smaller lithium diffusion coefficient(2×10-12cm2·s-1 for Li/W=0.24) compared with the amorphous ones,which have a Li/W ratio of 0.29 and a coefficient of ~2.5×10-11cm2·s-1 as Li/W=0.24.These results demonstrate that the large optical modulation relates to the large lithium storage capacity,and the fast coloration transition is associated with fast lithium diffusion.  相似文献   

19.
Pure VO2 and VO2-WO3 composite thin films were grown on quartz substrate by pulsed laser deposition (PLD) technique. The influence of varying WO3 molar concentration in the range from x = 0.0 to x = 0.4 on structural, electrical and optical properties of VO2-WO3 nanocomposite thin films has been systematically investigated. X-ray diffraction studies reveal the single crystalline monoclinic VO2 phase (m-VO2) up to 10% of WO3 content whereas both m-VO2 as well as h-WO3 (hexagonal WO3) phases were present at higher WO3 content (0.2 ≤ x ≤ 0.4). Optical transmittance spectra of the films showed blue shift in the absorption edge with increase in WO3 content. Temperature dependence of resistivity (R-T) measurements indicates significant variation in metal-insulator transition temperature, width of the hysteresis, and shape of the hysteresis curve. Cyclic Voltammetry measurements were performed on VO2-WO3 thin films. A direct correlation between V/W ratio and structure-property relationship was established. The present investigations reveal that doping of WO3 in VO2 is effective to increase the optical transmittance and to reduce the semiconductor to metal phase transition temperature close to room temperature.  相似文献   

20.
ZnWO4 nanorods with a bundle-like structure were synthesized at 180°C for 12 h by a hydrothermal technology from Na2WO4⋅2H2O and ZnSO4⋅7H2O in the presence of sodium dodecyl sulfate (SDS). The as-synthesized bundle-like structure of ZnWO4 nanorods was characterized by various techniques: TEM, XRD and EDS. The luminescence properties of the bundle-like structure of the ZnWO4 nanorods were investigated by photoluminescence (PL) spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号