首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lump solution is one of the exact solutions of the nonlinear evolution equation. In this paper, we study the lump solution and lump-type solutions of (2+1)-dimensional dissipative Ablowitz–Kaup–Newell–Segure (AKNS) equation by the Hirota bilinear method and test function method. With the help of Maple, we draw three-dimensional plots of the lump solution and lump-type solutions, and by observing the plots, we analyze the dynamic behavior of the (2+1)-dimensional dissipative AKNS equation. We find that the interaction solutions come in a variety of interesting forms.  相似文献   

2.
In this thesis we construct five‐dimensional gauged supergravity actions which describe flop and conifold transitions in M‐theory compactified on Calabi‐Yau threefolds. While the vector multiplet sector is determined exactly, we use the Wolf spaces to model the universal hypermultiplet together with N charged hypermultiplets corresponding to winding states of M2‐branes. After specifying the hypermultiplet sector the actions are uniquely determined by M‐theory. As an application we consider five‐dimensional Kasner cosmologies. Including the dynamics of the winding modes, we find smooth cosmological solutions which undergo flop and conifold transitions. Instead of the usual runaway behavior the scalar fields of these solutions generically stabilize in the transition region where they oscillate around the transition locus. The scalar potential thereby induces short episodes of accelerated expansion in the space‐time.  相似文献   

3.
We investigate the D‐dimensional Klein‐Gordon equation in the presence of both Coulomb and Cornell potentials by quasi‐exact methodology. The Coulomb potential yields a degenerate result as the dimension increases, i.e. the quantum number l plays no role in the energy relation. For the Cornell potential, however, the behavior is different and no degeneracy exists. Closed form of eigenfunctions is reported and the energy behavior for different states is numerically discussed.  相似文献   

4.
This paper studies the new families of exact traveling wave solutions with the modified nonlinear Schrödinger equation, which models the propagation of rogue waves in ocean engineering. The extended Fan sub-equation method with five parameters is used to find exact traveling wave solutions. It has been observed that the equation exhibits a collection of traveling wave solutions for limiting values of parameters. This method is beneficial for solving nonlinear partial differential equations, because it is not only useful for finding the new exact traveling wave solutions, but also gives us the solutions obtained previously by the usage of other techniques (Riccati equation, or first-kind elliptic equation, or the generalized Riccati equation as mapping equation, or auxiliary ordinary differential equation method) in a combined approach. Moreover, by means of the concept of linear stability, we prove that the governing model is stable. 3D figures are plotted for showing the physical behavior of the obtained solutions for the different values of unknown parameters with constraint conditions.  相似文献   

5.
The (3+1)‐dimensional [(3+1)D] nonlinear Schrödinger (NLS) equation is investigated, describing the propagation of nonlinear spatiotemporal wave packets in a self‐defocusing medium, and a new type of Airy spatiotemporal solutions is presented. By using the reductive perturbation method, the (3+1)D NLS equation is reduced to the spherical Kortewegde Vries (SKdV) equation. Based on the Hirota's bilinear method, the bilinear form of the SKdV equation is constructed and Airy light bullet (LB) solutions of different orders are obtained, which depend on the sets of two free constants associated with the amplitude and initial phase. The results show that these Airy LBs can exist in the self‐defocusing medium and their intensities can be controlled by selecting the suitable free parameters along the propagation distance. As examples, three types of low‐order approximate LB solutions are presented and their intensity profiles numerically discussed. The obtained results are helpful in exploring nonlinear phenomena in a self‐defocusing medium and providing a new approach for possible experimental verification of LBs.  相似文献   

6.
Based on the Hirota’s method, the multiple-pole solutions of the focusing Schrödinger equation are derived directly by introducing some new ingenious limit methods. We have carefully investigated these multi-pole solutions from three perspectives: rigorous mathematical expressions, vivid images, and asymptotic behavior. Moreover, there are two kinds of interactions between multiple-pole solutions: when two multiple-pole solutions have different velocities, they will collide for a short time; when two multiple-pole solutions have very close velocities, a long time coupling will occur. The last important point is that this method of obtaining multiple-pole solutions can also be used to derive the degeneration of N-breather solutions. The method mentioned in this paper can be extended to the derivative Schrödinger equation, Sine-Gorden equation, mKdV equation and so on.  相似文献   

7.
Nonlinear spin excitations in ferromagnetic spin chains are studied for spintronic and magnetic devices including magnetic‐field sensors and for high‐density data storage. Here, (2+1)‐dimensional nonlinear Schrödinger equation is investigated, which describes the nonlinear spin dynamics for a Heisenberg ferromagnetic spin chain. Lie point symmetry generators and Lie symmetry groups of that equation are derived. Lie symmetry groups are related to the time, space, scale, rotation transformations, and Galilean boosts of that equation. Certain solutions, which are associated with the known solutions, are constructed. Based on the Lie symmetry generators, the reduced systems of such an equation are obtained. Based on the polynomial expansion and through one of the reduced systems, group‐invariant solutions are constructed. Soliton‐type group‐invariant solutions are graphically investigated and effects of the magnetic coupling coefficients, that is, α1, α2, α3, and α4, on the soliton's amplitude, width, and velocity are discussed. It is seen that α1, α2, α3, and α4 have no influence on the soliton's amplitude, but can affect the soliton's velocity and width. Lax pair and conservation laws of such an equation are derived.  相似文献   

8.
We introduce an approach that combines a similarity method with several transformations to find analytical solitary wave solutions for a generalized space- and time-variable coefficients of nonlinear Schrödinger equation with higher-order terms with consideration of varying dispersion, higher nonlinearities, gain/loss and external potential. One of these transformations is constructed in such a way that allows study of the width of localized solutions. Solitary-like wave solutions for front, bright and dark are given. The precise expressions of the soliton?s width, peak, and the trajectory of its mass center and the external potential which are symbol of dynamic behavior of these solutions, are investigated analytically. In addition, the dynamical behavior of moving, periodic, quasi-periodic of breathing, and resonant are discussed. Stability of the obtained solutions is analyzed both analytically and numerically.  相似文献   

9.
We discuss two classes of solutions to a novel Casimir equation associated with the Ito system, a coupled nonlinear wave equation. Both travelling wave
solutions and separable self-similar solutions are discussed. In a number of cases, explicit exact solutions are found. Such results, particularly the exact solutions, are useful in that they provide us a baseline of comparison to any numerical simulations.Besides, such solutions provide us a glimpse of the behavior of the Ito system,and hence the behavior of a type of nonlinear wave equation, for certain parameter regimes.  相似文献   

10.
Exact soliton solutions of the dark discrete nonlinear Schrtidinger (DNLS) equation with nonvanishing boundary conditions are found and especially it is shown that the dark DNLS equation can have both dark and bright soliton solutions. Some solitary wave solutions of the DNLS equation with nonvanishing boundary conditions are also derived.  相似文献   

11.
This paper studies the analytical and semi-analytic solutions of the generalized Calogero–Bogoyavlenskii–Schiff(CBS) equation. This model describes the(2 + 1)–dimensional interaction between Riemann-wave propagation along the y-axis and the x-axis wave. The extended simplest equation(ESE) method is applied to the model, and a variety of novel solitarywave solutions is given. These solitary-wave solutions prove the dynamic behavior of soliton waves in plasma. The accuracy of the obtained solution is verified using a variational iteration(VI) semi-analytical scheme. The analysis and the match between the constructed analytical solution and the semi-analytical solution are sketched using various diagrams to show the accuracy of the solution we obtained. The adopted scheme's performance shows the effectiveness of the method and its ability to be applied to various nonlinear evolution equations.  相似文献   

12.
In this Letter we have studied the quantum behavior of a spin half neutral fermion interacting with a pseudoscalar potential barrier in (1+11+1)-dimensional spacetime. Exact solutions for the corresponding Dirac equation are obtained both for bound and scattering states. The exact energy levels are obtained from the solutions of Dirac equation. The validity of the quasi-classical quantization rule is examined. For the scattering process the transmission and reflection coefficients are exactly calculated. The absence of the Klein?s paradox is also discussed.  相似文献   

13.
Quantized vortices are important topological excitations in Bose–Einstein condensates. The Gross–Pitaevskii equation is a widely accepted theoretical tool. High accuracy quantized-vortex solutions are desirable in many numerical and analytical studies. We successfully derive the Padéapproximate solutions for quantized vortices with winding numbers ω = 1, 2, 3, 4, 5, 6 in the context of the Gross–Pitaevskii equation for a uniform condensate. Compared with the numerical solutions, we find that(1) they approximate the entire solutions quite well from the core to infinity;(2) higher-order Padé approximate solutions have higher accuracy;(3) Padé approximate solutions for larger winding numbers have lower accuracy. The healing lengths of the quantized vortices are calculated and found to increase almost linearly with the winding number. Based on experiments performed with ~(87)Rb cold atoms, the healing lengths of quantized vortices and the number of particles within the healing lengths are calculated, and they may be checked by experiment. Our results show that the Gross–Pitaevskii equation is capable of describing the structure of quantized vortices and physics at length scales smaller than the healing length.  相似文献   

14.
In the present work a study is given for the evolution of a flat, isotropic and homogeneous Universe, which is filled with a causal bulk viscous cosmological fluid. We describe the viscous properties by an ultra‐relativistic equation of state, and bulk viscosity coefficient obtained from recent lattice QCD calculations. The basic equation for the Hubble parameter is derived by using the energy equation obtained from the assumption of the covariant conservation of the energy‐momentum tensor of the matter in the Universe. By assuming a power law dependence of the bulk viscosity coefficient, temperature and relaxation time on the energy density, we derive the evolution equation for the Hubble function. By using the equations of state from recent lattice QCD simulations and heavy‐ion collisions we obtain an approximate solution of the field equations. In this treatment for the viscous cosmology, no evidence for singularity is observed. For example, both the Hubble parameter and the scale factor are finite at t = 0, where t is the comoving time. Furthermore, their time evolution essentially differs from the one associated with non‐viscous and ideal gas. Also it is noticed that the thermodynamic quantities, like temperature, energy density and bulk pressure remain finite. Particular solutions are also considered in order to prove that the free parameter in this model does qualitatively influence the final results.  相似文献   

15.
The periodic and step-like solutions of the double-Sine-Gordon equation are investigated, with different initial conditions and for various values of the potential parameter epsilon. We plot energy and force diagrams, as functions of the inter-soliton distance for such solutions. This allows us to consider our system as an interacting many-body system in 1+1 dimension. We therefore plot state diagrams (pressure vs. average density) for step-like as well as periodic solutions. Step-like solutions are shown to behave similarly to their counterparts in the Sine-Gordon system. However, periodic solutions show a fundamentally different behavior as the parameter epsilon is increased. We show that two distinct phases of periodic solutions exist which exhibit manifestly different behavior. Response functions for these phases are shown to behave differently, joining at an apparent phase transition point.  相似文献   

16.
A (3+1)-dimensional Gross-Pitaevskii (GP) equation with time variable coefficients is considered, and is transformed into a standard nonlinear Schrödinger (NLS) equation. Exact solutions of the (3+1)D GP equation are constructed via those of the NLS equation. By applying specific time-modulated nonlinearities, dispersions, and potentials, the dynamics of the solutions can be controlled. Solitary and periodic wave solutions with snaking and breathing behavior are reported.  相似文献   

17.
In the present article, we consider the so‐called two‐spin equation that describes four‐level quantum systems. Recently, these systems attract attention due to their relation to the problem of quantum computation. We study general properties of the two‐spin equation and show that the problem for certain external backgrounds can be identified with the problem of one spin in an appropriate background. This allows one to generate a number of exact solutions for two‐spin equations on the basis of already known exact solutions of the one‐spin equation. Besides, we present some exact solutions for the two‐spin equation with an external background different for each spin but having the same direction. We study the eigenvalue problem for a time‐independent spin interaction and a time‐independent external background. A possible analogue of the Rabi problem for the two‐spin equation is defined. We present its exact solution and demonstrate the existence of magnetic resonances in two specific frequencies, one of them coinciding with the Rabi frequency, and the other depending on the rotating field magnitude. The resonance that corresponds to the second frequency is suppressed with respect to the first one.  相似文献   

18.
By Taylor expansion of Darboux matrix, a new generalized Darboux transformations(DTs) for a(2 + 1)-dimensional nonlinear Schrdinger(NLS) equation is derived, which can be reduced to two(1 + 1)-dimensional equation:a modified KdV equation and an NLS equation. With the help of symbolic computation, some higher-order rational solutions and rogue wave(RW) solutions are constructed by its(1, N-1)-fold DTs according to determinants. From the dynamic behavior of these rogue waves discussed under some selected parameters, we find that the RWs and solitons are demonstrated some interesting structures including the triangle, pentagon, heptagon profiles, etc. Furthermore, we find that the wave structure can be changed from the higher-order RWs into higher-order rational solitons by modulating the main free parameter. These results may give an explanation and prediction for the corresponding dynamical phenomena in some physically relevant systems.  相似文献   

19.
The next‐to‐next‐to‐leading order post‐Newtonian spin‐orbit and spin(1)‐spin(2) Hamiltonians for binary compact objects in general relativity are derived. The Arnowitt‐Deser‐Misner canonical formalism and its generalization to spinning compact objects in general relativity are presented and a fully reduced matter‐only Hamiltonian is obtained. Several simplifications using integrations by parts are discussed. Approximate solutions to the constraints and evolution equations of motion are provided. Technical details of the integration procedures are given including an analysis of the short‐range behavior of the integrands around the sources. The Hamiltonian of a test‐spin moving in a stationary Kerr spacetime is obtained by rather simple approach and used to check parts of the mentioned results. Kinematical consistency checks by using the global (post‐Newtonian approximate) Poincaré algebra are applied. Along the way a self‐contained overview for the computation of the 3PN ADM point‐mass Hamiltonian is provided, too.  相似文献   

20.
We describe this paper as a Sentimental Journey from Hydrodynamics to Supergravity. Beltrami equation in three dimensions that plays a key role in the hydrodynamics of incompressible fluids has an unsuspected relation with minimal supergravity in seven dimensions. We show that just supergravity and no other theory with the same field content but different coefficients in the lagrangian, admits exact two‐brane solutions where Arnold‐Beltrami fluxes in the transverse directions have been switched on. The rich variety of discrete groups that classify the solutions of Beltrami equation, namely the eigenfunctions of the operator on a three‐torus, are by this newly discovered token injected into the brane world. A new quite extensive playing ground opens up for supergravity and for its dual gauge theories in three dimensions, where all classical fields and all quantum composite operators will be assigned to irreducible representations of discrete crystallographic groups Γ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号