首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Achieving dynamical speedup of evolution in an open quantum system plays a key role in many technological applications. However, how to detect quantum speedup is unclear. In this work, a method to witness quantum speedup through the measure of the mutual information is presented. It is shown that the speed of evolution of a quantum system, can be witnessed by calculating the mutual information variation, whose increase is a clear signature of dynamical speedup. The result is explained by considering the time evolution of two qubits under a one‐sided noisy channel, finding out that the mechanism for the quantum speedup is closely associated with the total exchange of information between the system and its environment, which can be expressed by the variation of mutual information. Quantitatively, the average speed of evolution is shown proportional to the average variation of the mutual information in an interval of time. The conclusion can not only explain why the quantum entanglement (or quantum coherence) and the classical correlation are neither necessary nor sufficient to speed up the quantum evolution, but also give a vital way of detecting quantum speedup in realistic environments.  相似文献   

2.
邢贵超  夏云杰 《物理学报》2018,67(7):70301-070301
研究了与热库耦合的光学腔中三个相互作用的二能级原子间的纠缠动力学.采用拉普拉斯变换和下限共生等方法,通过数值计算,分析了原子间三体纠缠的演化以及腔场与热库间的两体纠缠演化,讨论了各耦合参数对系统纠缠演化的影响.研究结果表明:原子间纠缠在短时间内随着原子间耦合强度的增加而增加,随原子与腔场耦合强度的增加而减小,在长时极限下趋于一稳定值;体系的非马尔科夫性由原子与腔场的耦合强度以及热库的谱宽度共同决定,当热库与腔场为强耦合时,原子与腔场组成的系统遵循非马尔科夫动力学,此时随着热库谱宽的增加,原子系统由非马尔科夫性变为马尔科夫性,随着谱宽的继续增加,原子与腔场组成的系统遵循马尔科夫动力学,原子系统又表现出非马尔科夫性;调整腔场与热库的失谐可以有效抑制热库耗散对纠缠衰减的影响.  相似文献   

3.
It is known that one can characterize the decoherence strength of a Markovian environment by the product of its temperature and induced damping, and order the decoherence strength of multiple environments by this quantity. By deriving the non-Markovian dissipator of the completely-positive semi-group theorem for a general system with weak coupling to its environment, we show that for non-Markovian environments there also exists a natural (albeit partial) ordering of environment-induced irreversibility within a perturbative treatment. This measure can be applied to both low-temperature and non-equilibrium environments.  相似文献   

4.
In this paper we give an essentially self-contained account of some general structural properties of the dynamics of quantum open Markovian systems. We review some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit). We discuss a general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility.  相似文献   

5.
The influence of non‐Markovian characters on the adiabatic evolution is investigated. The adiabatic Raman process is simulated in a three‐level system coupled to two independent environments. The results show that the memory effect of environments can restrain the decoherence effect of the system. Even if the system has strong decay rates in the non‐Markovian environments, the adiabatic population transfer can be still completed efficiently. Moreover, the memory effect can reduce the dependence of the adiabatic evolution on the Rabi frequency. Specifically, the two independent non‐Markovian baths can suppress the decoherence more effectively than a single non‐Markovian bath.  相似文献   

6.
We consider a physical system which is coupled indirectly to a Markovian resevoir through an oscillator mode. This is the case, for example, in the usual model of an atomic sample in a leaky optical cavity which is ubiquitous in quantum optics. In the strong coupling limit the oscillator can be eliminated entirely from the model, leaving an effective direct coupling between the system an the resevoir. Here we provide a mathematically rigorous treatment of this limit as a weak limit of the time evolution and observables on a suitably chosen exponential domain in Fock space. The resulting effective model may contain emission and absorption as well as scattering interactions. R.v.H. is supported by the Army Research Office under Grant W911NF-06-1-0378.  相似文献   

7.
We investigate the effect of decoherence from a spin environment on the quantum channel capacity.Our results imply that the time evolution of the quantum channel capacity depends on the number of freedom degrees of the environment,the tunneling element,the initial state of the environment,and the system-environment coupling strength.From the analysis,we find that the strong tunneling elements and the weak coupling strength can enhance the quantum channel capacity while the environment with a large number of freedom degrees and the strong coupling strength will shrink it.  相似文献   

8.
刘辛  吴薇 《中国物理 B》2014,(7):263-268
We investigate the time evolution of quantum correlations, which are measured by Gaussian quantum discord in a continuous-variable bipartite system subject to common and independent non-Markovian environments. Considering an initial two-mode Gaussian symmetric squeezed thermal state, we show that quantum correlations can be created during the non-Markovian evolution, which is different from the Markovian process. Furthermore, we find that the temperature is a key factor during the evolution in non-Markovian environments. For common reservoirs, a maximum creation of quantum correlations may occur under an appropriate temperature. For independent reservoirs, the non-Markovianity of the total system corresponds to the subsystem whose temperature is higher. In both common and independent environments, the Gaussian quantum discord is influenced by the temperature and the photon number of each mode.  相似文献   

9.
The chain mapping of structured environments is a most powerful tool for the simulation of open quantum system dynamics. Once the environmental bosonic or fermionic degrees of freedom are unitarily rearranged into a one dimensional structure, the full power of Density Matrix Renormalization Group (DMRG) can be exploited. Beside resulting in efficient and numerically exact simulations of open quantum systems dynamics, chain mapping provides an unique perspective on the environment: the interaction between the system and the environment creates perturbations that travel along the one dimensional environment at a finite speed, thus providing a natural notion of light-, or causal-, cone. In this work we investigate the transport of excitations in a chain-mapped bosonic environment. In particular, we explore the relation between the environmental spectral density shape, parameters and temperature, and the dynamics of excitations along the corresponding linear chains of quantum harmonic oscillators. Our analysis unveils fundamental features of the environment evolution, such as localization, percolation and the onset of stationary currents.  相似文献   

10.
The Markovian time evolution of the entropy production rate is studied as a measure of irreversibility generated in a bipartite quantum system consisting of two coupled bosonic modes immersed in a common thermal environment. The dynamics of the system is described in the framework of the formalism of the theory of open quantum systems based on completely positive quantum dynamical semigroups, for initial two-mode squeezed thermal states, squeezed vacuum states, thermal states and coherent states. We show that the rate of the entropy production of the initial state and nonequilibrium stationary state, and the time evolution of the rate of entropy production, strongly depend on the parameters of the initial Gaussian state (squeezing parameter and average thermal photon numbers), frequencies of modes, parameters characterising the thermal environment (temperature and dissipation coefficient), and the strength of coupling between the two modes. We also provide a comparison of the behaviour of entropy production rate and Rényi-2 mutual information present in the considered system.  相似文献   

11.
We consider the weak coupling limit for a quantum system consisting of a small subsystem and reservoirs. It is known rigorously since [10] that the Heisenberg evolution restricted to the small system converges in an appropriate sense to a Markovian semigroup. In the nineties, Accardi, Frigerio and Lu [1] initiated an investigation of the convergence of the unreduced unitary evolution to a singular unitary evolution generated by a Langevin-Schrödinger equation. We present a version of this convergence which is both simpler and stronger than the formulations which we know. Our main result says that in an appropriately understood weak coupling limit the interaction of the small system with environment can be expressed in terms of the so-called quantum white noise.  相似文献   

12.
Zhenyu Lin 《中国物理 B》2022,31(7):70307-070307
The quantum speed limit (QSL) of the double quantum dot (DQD) system has been theoretically investigated by adopting the detection of the quantum point contact (QPC) in the pure dephasing environment. The Mandelstam-Tamm (MT) type of the QSL bound which is based on the trace distance has been extended to the DQD system for calculating the shortest evolving time. The increase of decoherence rate can weaken the capacity for potential speedup (CPS) and delay the evolving process due to the frequently measurement localizing the electron in the DQD system. The system needs longer time to evolve to the target state as the enhancement of dephasing rate, because the strong interaction between pure dephasing environment and the DQD system could vary the oscillation of the electron. Increasing the dephasing rate can sharp the QSL bound, but the decoherence rate would weaken the former effect and vice versa. Moreover, the CPS would be raised by increasing the energy displacement, while the enhancement of the coupling strength between two quantum dots can diminish it. It is interesting that there has an inflection point, when the coupling strength is less than the value of the point, the increasing effect of the CPS from the energy displacement is dominant, otherwise the decreasing tendency of the CPS is determined by the coupling strength and suppress the action of the energy displacement if the coupling strength is greater than the point. Our results provide theoretical reference for studying the QSL time in a semiconductor device affected by numerous factors.  相似文献   

13.
《Physics letters. A》2019,383(15):1698-1710
In this work, we present a multiple-scale perturbation technique suitable for the study of open quantum systems, which is easy to implement and in few iterative steps allows us to find excellent approximate solutions. For any time-local quantum master equation, whether markovian or non-markovian, in Lindblad form or not, we give a general procedure to construct analytical approximations to the corresponding dynamical map and, consequently, to the temporal evolution of the density matrix. As a simple illustrative example of the implementation of the method, we study an atom-cavity system described by a dissipative Jaynes-Cummings model. Performing a multiple-scale analysis we obtain approximate analytical expressions for the strong and weak coupling regimes that allow us to identify characteristic time scales in the state of the physical system.  相似文献   

14.
We investigate the quantum speed limit time(QSLT) of a two-level atom under quantum-jump-based feedback control or homodyne-based feedback control. Our results show that the two different feedback control schemes have different influences on the evolutionary speed. By adjusting the feedback parameters, the quantum-jump-based feedback control can induce speedup of the atomic evolution from an excited state, but the homodyne-based feedback control cannot change the evolutionary speed. Additionally, the QSLT for the whole dynamical process is explored. Under the quantum-jump-based feedback control, the QSLT displays oscillatory behaviors, which implies multiple speed-up and speed-down processes during the evolution. While, the homodyne-based feedback control can accelerate the speed-up process and improve the uniform speed in the uniform evolution process.  相似文献   

15.
Wen-Li Yu 《中国物理 B》2023,32(1):10302-010302
An open quantum battery (QB) model of a single qubit system charging in a coherent auxiliary bath (CAB) consisting of a series of independent coherent ancillae is considered. According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state. We find that the full charging capacity (or the maximal extractable work (MEW)) of QB, in the weak QB-ancilla coupling limit, is positively correlated with the coherence magnitude of ancilla. Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength, such as the MEW, average charging power and the charging efficiency, when considering the bath to be a thermal auxiliary bath (TAB) and a CAB, respectively. We find that when the QB with CAB, in the weak coupling regime, is in fully charging, both its capacity and charging efficiency can go beyond its classical counterpart, and they increase with the increase of coherence magnitude of ancilla. In addition, the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing, and the first peak value can even be larger than the full charging MEW of QB. This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process. These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla. This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of "fuel" of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.  相似文献   

16.
How to improve charging processes and suppress self-discharging processes has always been one of the key issues to achieve quantum batteries with high performance. Although a quantum battery is inevitably influenced by composite environments, this situation is still little understood, particularly regarding the influence of the memory effect of the composite environments and the coupling between composite environments. In this work, we investigate the effects of the composite environments, composed of two identical parts each containing a single cavity mode decaying to a reservoir, on the charging and self-discharging processes of a quantum battery. We show that increasing the two-mode coupling can effectively enhance the charging performance (i.e., the stored energy, the charging power, ergotropy) and restrain the self-discharging process (i.e., suppressing the process of dissipating the energy). However, different from the effect of two-mode coupling, we reveal that the memory effect of the reservoir in this composite environment is unfavorable to the charging process of the quantum battery, which is in sharp contrast to previous studies where the memory effect can significantly improve the charging performance of a quantum battery. Our results may benefit to the realization of quantum batteries with high performance under the actual complex environmental noise.  相似文献   

17.
尹少英  刘庆欣  宋杰  许学新  周可雅  刘树田 《中国物理 B》2017,26(10):100501-100501
We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment.For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.  相似文献   

18.
The dynamics of the strong coupling BCS model, considered as an open system interacting with a thermal bath, is solved rigorously and explicitly in the weak coupling limit and in the infinite-volume limit. The BCS system goes from the normal phase to the ordered phase by bifurcation. Fluctuations around trajectories of intensive observables are Gaussian and Markovian. Thermodynamic phases are global attractors in the physical domain. Structural stability is discussed. The model provides an example of a nonequilibrium statistical mechanical system with phase transition whose irreversible macroscopic dynamics can be calculated exactly from the underlying Hamiltonian quantum mechanics.  相似文献   

19.
We study a dynamic process of disentanglement by considering the time evolution of bound entanglement for a quantum open system, two qutrits coupling to a common environment. Here, the initial quantum correlations of the two qutrits are characterized by the bound entanglement. Both bosonic and spin environments are considered. We found that the bound entanglement displays collapses and revivals, and it can be stable against small temperature and time change. The thermal fluctuation effects on bound entanglement are also considered.  相似文献   

20.
In the present study, time evolution of quantum Cramer–Rao bound of entangled N00N state, as phase sensitivity, is determined by the aid of quantum estimation theory in the presence decoherence channels. Also, the dynamic quantum process as decoherence approach is characterized by quantum fisher information flow and entanglement amount in order to distinguish between Markovian and Non-Markovian process. The comparison between quantum fisher information and quantum fisher information flow assists to comprehend the phase sensitivity evolution corresponding to Non-Markovian and Markovian process. Furthermore, as result of backflow of information from the environment to system, the phase sensitivity corresponding memory effect of environment are revived after complete decay and increase in the few times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号