首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The electrical and heat currents flowing through a quantum dot are calculated in the presence of a time‐modulated gate voltage with the help of the out‐of‐equilibrium Green function technique. From the first harmonics of the currents, we extract the electrical and thermoelectrical trans‐admittances and ac‐conductances. Next, by a careful comparison of the ac‐conductances with the finite‐frequency electrical and mixed electrical‐heat noises, we establish the fluctuation‐dissipation relations linking these quantities, which are thus generalized out‐of‐equilibrium for a quantum system. It is shown that the electrical ac‐conductance associated to the displacement current is directly linked to the electrical noise summed over reservoirs, whereas the relation between the thermoelectrical ac‐conductance and the mixed noise contains an additional term proportional to the energy step that the electrons must overcome when traveling through the junction. A numerical study reveals however that a fluctuation‐dissipation relation involving a single reservoir applies for both electrical and thermoelectrical ac‐conductances when the frequency dominates over the other characteristic energies.  相似文献   

2.
A comprehensive study on the output power, the modulation response, and the relative intensity noise (RIN) behavior of an optically injection‐locked mid‐infrared quantum‐cascade laser reveals that the modulation bandwidth and the output power are enhanced in the stable locking range, while the RIN of the slave laser is a superposition of the master and slave noise sources. Since the RIN level of the master laser can even take the lead, a design procedure is introduced to improve the main characteristics of a free‐running laser, including the RIN, the photon lifetime, the modulation bandwidth, and the bias current, using facet reflectivity tailoring. A figure of merit is defined and the RIN reduction of about 20 dB Hz?1 is obtained for very low injection powers compared with the injection‐locked system before the design of master laser.  相似文献   

3.
We combine theoretical and experimental methods to study the processes induced by fast laser heating of metal foils. These processes reveal themselves through motion of frontal (irradiated) and rear‐side foil boundaries. The irradiated targets are 0.3‐2 micron thick aluminum foils deposited on much thicker (150 microns) glass plate. The instant boundary positions is measured by pump‐probe technique having ∼40‐150 fs time and ∼1 nm spatial resolutions. Ultrashort laser pulse transforms a frontal surface layer with thickness dT into two‐temperature (TeTi) warm dense matter state. Its quantitative characteristics including its thickness are defined by poorly known coefficients of electron‐ion energy exchange α and electron heat conductivity κ. Fast laser heating rises pressure in the dT‐layer and therefore produce acoustic waves. Propagation and reflection from the frontal and rear boundaries of these waves causes the displacement Δx (t) of boundary positions. Pressure wave profiles, and hence functions Δx (t), depend on thickness dT. This is why the experimental detection of Δx (t) opens a way to accurate evaluation of the coefficients α and κ (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The outcoupling of a Bose‐Einstein condensate through an optical lattice provides an interesting scenario to study quantum transport phenomena or the analog Hawking effect as the system can reach a quasi‐stationary black‐hole configuration. We devote this work to characterize the quantum transport properties of quasi‐particles on top of this black‐hole configuration by computing the corresponding scattering matrix. We find that most of the features can be understood in terms of the usual Schrödinger scattering. In particular, a transmission band appears in the spectrum, with the normal‐normal transmission dominating over the anomalous‐normal one. We show that this picture still holds in a realistic experimental situation where the actual Gaussian envelope of the optical lattice is considered. A peaked resonant structure is displayed near the upper end of the transmission band, which suggests that the proposed setup is a good candidate to provide a clear signal of spontaneous Hawking radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号