首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interest to mesoscale dielectric objects, whose effective dimensions are comparable with the incident radiation wavelength, is caused by their unique ability to modify the spatial structure of the incident wave in the specific manner and to produce a highly localized intensive optical flux (“photonic jet”) with the subwavelength spatial resolution. In the current paper we brief review the modern state‐of‐the‐art of main principles of the photonic jet formation by non‐spherical and non‐symmetrical dielectric mesoscale particles both in transmitting and reflection mode. A deeper understanding of the photonic jet is nevertheless needed to fully exploit the potential performance of nano‐ and micro‐ dielectric mesoscale objects as diffractive components at different wavebands.

  相似文献   


2.
A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far‐infrared surface wave propagating along a semiconductor‐dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing‐down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure.

  相似文献   


3.
This paper investigates the wavelength dependence of the threshold of gold nanorod‐mediated optical breakdown during picosecond and femtosecond near infrared optical pulses. It was found that the wavelength dependence in the picosecond regime is governed solely by the changes of a nanorod's optical properties. On the other hand, the optical breakdown threshold during femtosecond pulse exposure falls within one of two regimes. When the ratio of the maximum electric field from the outside to the inside of the nanorod is less then 7 (the absorption regime) the seed electrons are initiated by photo‐thermal emission, and the wavelength dependence in the threshold of optical breakdown is the result of optical properties of the nanoparticle. When the ratio is greater than 7 (the near‐field regime) more seed electrons are initiated by multiphoton ionization, and the wavelength dependence of the threshold of optical breakdown results from a combination of nanorod's optical properties and transitions in the order of multiphoton ionization. The findings of this study can guide the design of nanoparticle based optical breakdown applications. This analysis also deepens the understanding of nanoparticle‐mediated laser induced breakdown for picosecond and femtosecond pulses at near infrared wavelengths.

  相似文献   


4.
The properties of the superconducting and the anomalous normal state were described by using the Eliashberg method. The pairing mechanism was reproduced with the help of the Hamiltonian, which models the electron‐phonon and the electron‐electron‐phonon interaction (EEPh). The set of the Eliashberg equations, which determines the order parameter function (φ), the wave function renormalization factor (Z), and the energy shift function (χ), was derived. It was proven that for the sufficiently large values of the EEPh potential, the doping dependence of the order parameter () has the analogous course to that observed experimentally in cuprates. The energy gap in the electron density of states is induced by Z and χ ‐ the contribution from φ is negligible. The electron density of states possesses the characteristic asymmetric form and the pseudogap is observed above the critical temperature.

  相似文献   


5.
Single neutral atom mechanics is controllable by focused, high‐intensity optical vortices. The intensity‐dependent, laser‐driven motion of the atom's active electrons subsumes to a net transfer of the orbital angular momentum of the light to the neutral atom. The ponderomotive force on these electrons translates so into an unbounded or a bounded radial drift of the atom depending on its initial kinetic energy, as set by the temperature. Appropriate combination of laser beams results in sub‐wavelength, dynamical radial traps for tweezing atoms controllably, an effect that can be exploited for atom guiding, structuring, and lithographic applications.

  相似文献   


6.
Uncertainties in successive measurements of general canonically conjugate variables are examined. Such operators are approached within a limiting procedure of the Pegg–Barnett type. Dealing with unbounded observables, we should take into account a finiteness of detector resolution. An appropriate reformulation of two scenarios of successive measurements is proposed and motivated. Uncertainties are characterized by means of generalized entropies of both the Rényi and Tsallis types. The Rényi and Tsallis formulations of uncertainty relations are obtained for both the scenarios of successive measurements of canonically conjugate operators. Entropic uncertainty relations for the cases of position and momentum are separately discussed.

  相似文献   


7.
Recently, compressed H2S has been shown to become superconducting at 203 K under a pressure of 155 GPa. One might expect fluctuations to dominate at such temperatures. Using the magnetisation critical current, we determine the ground‐state London penetration depth, λ0=189 nm, and the superconducting energy gap, Δ0=27.8 meV, and find these parameters are similar to those of cuprate superconductors. We also determine the fluctuation temperature scale, K, which shows that, unlike the cuprates, of the hydride is not limited by fluctuations. This is due to its three dimensionality and suggests the search for better superconductors should refocus on three‐dimensional systems where the inevitable thermal fluctuations are less likely to reduce the observed .

  相似文献   


8.
We consider a universe with a bulk viscous cosmic fluid, in a flat Friedmann‐Lemaitre‐Robertson‐Walker geometry. We derive the conditions for the existence of inflation, and those which at the same time prevent the occurrence of self‐reproduction. Our theoretical model gives results which are in perfect agreement with the most recent data from the PLANCK surveyor.

  相似文献   


9.
Uniform, graded and spaced arrays of 3 μm triangular antidots in pulsed laser deposited YBa2Cu3O7 (YBCO) superconducting thin films are compared by examining the improvements in the critical current density they produced. The comparison is made to establish the role of their lithographically defined (non‐)uniformity and the effectiveness to control and/or enhance the critical current density. It is found that almost all types of non‐uniform arrays, including graded ones enhance over the broad applied magnetic field and temperature range due to the modified critical state. Whereas uniform arrays of antidots either reduce or produce no effect on compared to the original (as‐deposited) thin films.

  相似文献   


10.
Recently a stable monolayer of antimony in buckled honeycomb structure called antimonene was successfully grown on 3D topological insulator Bi2Te3 and Sb2Te3, which displays novel semiconducting properties. By first‐principle calculations, we systematically investigate the electronic and optical properties of α‐ and β‐allotropes of monolayer arsenene/antimonene. The obtained electronic structures reveal that the direct band gap of α‐arsenene/antimonene is much smaller than the indirect band gap of their β‐counterpart, respectively. Significant absorption is observed in α‐antimonene, which can be used as a broad saturable absorber. For β‐arsenene/antimonene, the reflectivity is low and the absorption is negligible in the visible region when the polarization along the out‐plane direction, indicating that β‐arsenene/antimonene are polarizationally transparent materials.

  相似文献   


11.
Asymmetric metal‐dielectric nanostructures are demonstrated superior optical properties arising from the combination of strong enhancement of near‐fields and controllable scattering characteristics which originate from plasmonic and high‐index dielectric components. Here, being inspired by the recent advances of the asymmetric hybrid nanoparticles fabrication [Dmitry Zuev, et al., Adv. Mater. 28 , 3087 (2016)], we suggest and study numerically a novel type of hybrid dimer nanoantennas. The nanoantennas consist of asymmetric metal‐dielectric (Au/Si) nanoparticles and allow tuning of the near‐ and far‐field properties via laser induced reshaping of the metal part at the nanoscale. We demonstrate an ability to modification of the scattering properties, near‐field distribution profilis, normalized local density of states, and radiation patterns of the nanoantenna upon the laser reshaping. The parameters used to investigate these effects correspond to experimentally demonstrated values.

  相似文献   


12.
A theory of dielectric response of water under nanoscale confinement was long overdue. This work addresses the problem by establishing a relation between dielectric response and hydrogen‐bond frustration subsumed in a non‐Debye polarization term. The results hold down to the single‐molecule contribution and are validated vis‐à‐vis experimental measurements on a system where dielectric modulation entails removal of a single water molecule. The frustrated dielectric response down to molecular scales is assessed by contrasting two enantiomeric ligands in association with the same protein, with the complexes differing in the removal of a single interfacial water molecule.

  相似文献   


13.
The optical properties and sensing performances of the molecular sensors based on plasmonic Fano‐resonance (PFR) nanostructures have been numerically investigated in detail. The on‐resonance sensor, in which the Fano‐resonance position is overlapping with the absorption‐band of the detected molecules perfectly, reveals a powerful ability to detect the molecules with a low concentration or thin thickness. By the bias‐modulation of a single‐layer graphene, the Fano‐resonance position of the nanostructures can be tuned effectively. On being modulated properly, the PFR sensor shows an ultrahigh performance because of the unprecedentedly high overlap of the Fano‐resonance position with the absorption‐band of molecules, which is enabling superior signal strength in the molecular detections based on their vibrational fingerprints. Our proposed strategy may enable the development of dynamic sensors and open exciting prospects for bio‐sensing.

  相似文献   


14.
We analyze how a multilevel many‐electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one‐ and two‐electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.

  相似文献   


15.
The FeTe parent compound for iron‐superconductor chalcogenides was studied applying Mössbauer spectroscopy accompanied by ab initio calculations of electric field gradients at the iron nuclei. Room‐temperature (RT) Mössbauer spectra of single crystals have shown asymmetric doublet structure commonly ascribed to contributions of over‐stoichiometric iron or impurity phases. Low‐temperature Mössbauer spectra of the magnetically ordered compound could be well described by four hyperfine‐split sextets, although no other foreign phases different from Fe1.05Te were detected by XRD and microanalysis within the sensitivity limits of the equipment. Density functional ab initio calculations have shown that over‐stoichiometric iron atoms significantly affect electron charge and spin density up to the second coordination sphere of the iron sub‐lattice, and, as a result, four non‐equivalent groups of iron atoms are formed by their local environment. The resulting four‐group model consistently describes the angular dependence of the single crystals Mössbauer spectra as well as intensity asymmetry of the doublet absorption lines in powdered samples at RT. We suppose that our approach could be extended to the entire class of FeSeTex compounds, which contain excess iron atoms.

  相似文献   


16.
In this paper, we address the implications when a homogeneous dust model is considered for a scenario of gravitational collapse in the context of Eddington‐inspired Born‐Infeld (EiBI) theory. In order to describe the dynamical evolution of the collapse, we present an effective equation, which constitutes the first order corrections, in EiBI coupling parameter κ, to Einstein's field equations. The geometry outside the collapsing object is derived by imposing the standard Darmois‐Israel junction conditions at the boundary surface of the dust. This induces an effective matter source in the outer region which gives rise to a non‐singular, non‐Schwarzschild geometry at the final state of the collapse. For this exterior geometry, we find the threshold of mass for the formation of the black hole. This provides a cut‐off over κ as .

  相似文献   


17.
18.
The circular dichroism of titanium‐doped silver chiral nanorod arrays grown using the glancing angle deposition (GLAD) method is investigated in the visible and near infrared ranges using transmission ellipsometry and spectroscopy. These films are found to have significant circular polarization effects across broad ranges of the visible to NIR spectrum, including large values for optical rotation. The characteristics of these circular polarization effects are strongly influenced by the morphology of the deposited arrays. Thus, the morphological control of the optical activity in these nanostructures demonstrates significant optimization capability of the GLAD technique for fabricating chiral plasmonic materials.

  相似文献   


19.
A comparative analysis of three different time‐independent approaches to studying open quantum structures in a uniform electric field was performed using the example of a one‐dimensional attractive or repulsive δ‐potential and the surface that supports the Robin boundary condition. The three considered methods exploit different properties of the scattering matrix as a function of energy E: its poles, real values, and zeros of the second derivative of its phase. The essential feature of the method of zeroing the resolvent, which produces complex energies, is the unlimited growth of the wave function at infinity, which is, however, eliminated by the time‐dependent interpretation. The real energies at which the unitary scattering matrix becomes real correspond to the largest possible distortion, , or its absence at which in either case leads to the formation of quasibound states. Depending on their response to the increasing electric intensity, two types of field‐induced positive energy quasibound levels are identified: electron‐ and hole‐like states. Their evolution and interaction in the enlarging field lead ultimately to the coalescence of pairs of opposite states, with concomitant divergence of the associated dipole moments in what is construed as an electric breakdown of the structure. The characteristic features of the coalescence fields and energies are calculated and the behavior of the levels in their vicinity is analyzed. Similarities between the different approaches and their peculiarities are highlighted; in particular, for the zero‐field bound state in the limit of the vanishing , all three methods produce the same results, with their outcomes deviating from each other according to growing electric intensity. The significance of the zero‐field spatial symmetry for the formation, number, and evolution of the electron‐ and hole‐like states, and the interaction between them, is underlined by comparing outcomes for the symmetric δ geometry and asymmetric Robin wall.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号