首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of the superconducting and the anomalous normal state were described by using the Eliashberg method. The pairing mechanism was reproduced with the help of the Hamiltonian, which models the electron‐phonon and the electron‐electron‐phonon interaction (EEPh). The set of the Eliashberg equations, which determines the order parameter function (φ), the wave function renormalization factor (Z), and the energy shift function (χ), was derived. It was proven that for the sufficiently large values of the EEPh potential, the doping dependence of the order parameter () has the analogous course to that observed experimentally in cuprates. The energy gap in the electron density of states is induced by Z and χ ‐ the contribution from φ is negligible. The electron density of states possesses the characteristic asymmetric form and the pseudogap is observed above the critical temperature.

  相似文献   


2.
Asymmetric metal‐dielectric nanostructures are demonstrated superior optical properties arising from the combination of strong enhancement of near‐fields and controllable scattering characteristics which originate from plasmonic and high‐index dielectric components. Here, being inspired by the recent advances of the asymmetric hybrid nanoparticles fabrication [Dmitry Zuev, et al., Adv. Mater. 28 , 3087 (2016)], we suggest and study numerically a novel type of hybrid dimer nanoantennas. The nanoantennas consist of asymmetric metal‐dielectric (Au/Si) nanoparticles and allow tuning of the near‐ and far‐field properties via laser induced reshaping of the metal part at the nanoscale. We demonstrate an ability to modification of the scattering properties, near‐field distribution profilis, normalized local density of states, and radiation patterns of the nanoantenna upon the laser reshaping. The parameters used to investigate these effects correspond to experimentally demonstrated values.

  相似文献   


3.
Uniform, graded and spaced arrays of 3 μm triangular antidots in pulsed laser deposited YBa2Cu3O7 (YBCO) superconducting thin films are compared by examining the improvements in the critical current density they produced. The comparison is made to establish the role of their lithographically defined (non‐)uniformity and the effectiveness to control and/or enhance the critical current density. It is found that almost all types of non‐uniform arrays, including graded ones enhance over the broad applied magnetic field and temperature range due to the modified critical state. Whereas uniform arrays of antidots either reduce or produce no effect on compared to the original (as‐deposited) thin films.

  相似文献   


4.
Recently, compressed H2S has been shown to become superconducting at 203 K under a pressure of 155 GPa. One might expect fluctuations to dominate at such temperatures. Using the magnetisation critical current, we determine the ground‐state London penetration depth, λ0=189 nm, and the superconducting energy gap, Δ0=27.8 meV, and find these parameters are similar to those of cuprate superconductors. We also determine the fluctuation temperature scale, K, which shows that, unlike the cuprates, of the hydride is not limited by fluctuations. This is due to its three dimensionality and suggests the search for better superconductors should refocus on three‐dimensional systems where the inevitable thermal fluctuations are less likely to reduce the observed .

  相似文献   


5.
The FeTe parent compound for iron‐superconductor chalcogenides was studied applying Mössbauer spectroscopy accompanied by ab initio calculations of electric field gradients at the iron nuclei. Room‐temperature (RT) Mössbauer spectra of single crystals have shown asymmetric doublet structure commonly ascribed to contributions of over‐stoichiometric iron or impurity phases. Low‐temperature Mössbauer spectra of the magnetically ordered compound could be well described by four hyperfine‐split sextets, although no other foreign phases different from Fe1.05Te were detected by XRD and microanalysis within the sensitivity limits of the equipment. Density functional ab initio calculations have shown that over‐stoichiometric iron atoms significantly affect electron charge and spin density up to the second coordination sphere of the iron sub‐lattice, and, as a result, four non‐equivalent groups of iron atoms are formed by their local environment. The resulting four‐group model consistently describes the angular dependence of the single crystals Mössbauer spectra as well as intensity asymmetry of the doublet absorption lines in powdered samples at RT. We suppose that our approach could be extended to the entire class of FeSeTex compounds, which contain excess iron atoms.

  相似文献   


6.
A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far‐infrared surface wave propagating along a semiconductor‐dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing‐down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure.

  相似文献   


7.
A theory of dielectric response of water under nanoscale confinement was long overdue. This work addresses the problem by establishing a relation between dielectric response and hydrogen‐bond frustration subsumed in a non‐Debye polarization term. The results hold down to the single‐molecule contribution and are validated vis‐à‐vis experimental measurements on a system where dielectric modulation entails removal of a single water molecule. The frustrated dielectric response down to molecular scales is assessed by contrasting two enantiomeric ligands in association with the same protein, with the complexes differing in the removal of a single interfacial water molecule.

  相似文献   


8.
Following the Dirac‐Frenkel time‐dependent variational principle, transient dynamics of a one‐dimensional Holstein polaron with diagonal and off‐diagonal exciton‐phonon coupling in an external electric field is studied by employing the multi‐D2 Ansatz, also known as a superposition of the usual Davydov D2 trial states. Resultant polaron dynamics has significantly enhanced accuracy, and is in perfect agreement with that derived from the hierarchy equations of motion method. Starting from an initial broad wave packet, the exciton undergoes typical Bloch oscillations. Adding weak exciton‐phonon coupling leads to a broadened exciton wave packet and a reduced current amplitude. Using a narrow wave packet as the initial state, the bare exciton oscillates in a symmetric breathing mode, but the symmetry is easily broken by weak coupling to phonons, resulting in a non‐zero exciton current. For both scenarios, temporal periodicity is unchanged by exciton‐phonon coupling. In particular, at variance with the case of an infinite linear chain, no steady state is found in a finite‐sized ring within the anti‐adiabatic regime. For strong diagonal coupling, the multi‐ Anstaz is found to be highly accurate, and the phonon confinement gives rise to exciton localization and decay of the Bloch oscillations.

  相似文献   


9.
We analyze how a multilevel many‐electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one‐ and two‐electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.

  相似文献   


10.
Tailoring light with a digital micromirror device   总被引:1,自引:0,他引:1       下载免费PDF全文
A digital micromirror device (DMD) is a product of micromechanics. The DMD employs numerous micromirrors as the actuating components to switch small portions of light on and off. During the past few decades, such devices have been widely applied in digital light processing technology. The expanding range of applications makes the DMD increasingly important in various research aspects. Recent advances demonstrate that the DMD is potentially better than the traditional liquid crystal spatial light modulator in speed, spectrum sensitivity, and polarization modulation. These characteristics have been verified in a series of recently reported experiments. This review summarizes the related theory, experimental techniques, and applications for wavefront shaping with DMDs in both statically shaping various spatial modes and dynamically compensating for wavefront distortion caused by the scattering medium.

  相似文献   


11.
Recently a stable monolayer of antimony in buckled honeycomb structure called antimonene was successfully grown on 3D topological insulator Bi2Te3 and Sb2Te3, which displays novel semiconducting properties. By first‐principle calculations, we systematically investigate the electronic and optical properties of α‐ and β‐allotropes of monolayer arsenene/antimonene. The obtained electronic structures reveal that the direct band gap of α‐arsenene/antimonene is much smaller than the indirect band gap of their β‐counterpart, respectively. Significant absorption is observed in α‐antimonene, which can be used as a broad saturable absorber. For β‐arsenene/antimonene, the reflectivity is low and the absorption is negligible in the visible region when the polarization along the out‐plane direction, indicating that β‐arsenene/antimonene are polarizationally transparent materials.

  相似文献   


12.
Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moiré superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly.

  相似文献   


13.
The interplay of such cornerstones of modern nonlinear fiber optics as a nonlinearity, stochasticity and polarization leads to variety of the noise induced instabilities including polarization attraction and escape phenomena harnessing of which is a key to unlocking the fiber optic systems specifications required in high resolution spectroscopy, metrology, biomedicine and telecommunications. Here, by using direct stochastic modeling, the mapping of interplay of the Raman scattering‐based nonlinearity, the random birefringence of a fiber, and the pump‐to‐signal intensity noise transfer has been done in terms of the fiber Raman amplifier parameters, namely polarization mode dispersion, the relative intensity noise of the pump laser, fiber length, and the signal power. The obtained results reveal conditions for emergence of the random birefringence‐induced resonance‐like enhancement of the gain fluctuations (stochastic anti‐resonance) accompanied by pulse broadening and rare events in the form of low power output signals having probability heavily deviated from the Gaussian distribution.

  相似文献   


14.
We consider a universe with a bulk viscous cosmic fluid, in a flat Friedmann‐Lemaitre‐Robertson‐Walker geometry. We derive the conditions for the existence of inflation, and those which at the same time prevent the occurrence of self‐reproduction. Our theoretical model gives results which are in perfect agreement with the most recent data from the PLANCK surveyor.

  相似文献   


15.
The optical properties and sensing performances of the molecular sensors based on plasmonic Fano‐resonance (PFR) nanostructures have been numerically investigated in detail. The on‐resonance sensor, in which the Fano‐resonance position is overlapping with the absorption‐band of the detected molecules perfectly, reveals a powerful ability to detect the molecules with a low concentration or thin thickness. By the bias‐modulation of a single‐layer graphene, the Fano‐resonance position of the nanostructures can be tuned effectively. On being modulated properly, the PFR sensor shows an ultrahigh performance because of the unprecedentedly high overlap of the Fano‐resonance position with the absorption‐band of molecules, which is enabling superior signal strength in the molecular detections based on their vibrational fingerprints. Our proposed strategy may enable the development of dynamic sensors and open exciting prospects for bio‐sensing.

  相似文献   


16.
We report on the transport properties of the super‐honeycomb lattice, the band structure of which possesses a flat band and Dirac cones, according to the tight‐binding approximation. The super‐honeycomb model combines the honeycomb lattice and the Lieb lattice and displays the properties of both. It also represents a hybrid fermionic and bosonic system, which is rarely seen in nature. By choosing the phases of input beams properly, the flat‐band mode of the super‐honeycomb lattice will be excited and the input beams will exhibit strong localization during propagation. On the other hand, if the modes of Dirac cones of the super‐honeycomb lattice are excited, one will observe conical diffraction. Furthermore, if the input beam is properly chosen to excite a sublattice of the super‐honeycomb lattice and the modes of Dirac cones with different pseudospins, e.g., by the three‐beam interference pattern, the pseudospin‐mediated vortices will be observed.

  相似文献   


17.
A comparative analysis of three different time‐independent approaches to studying open quantum structures in a uniform electric field was performed using the example of a one‐dimensional attractive or repulsive δ‐potential and the surface that supports the Robin boundary condition. The three considered methods exploit different properties of the scattering matrix as a function of energy E: its poles, real values, and zeros of the second derivative of its phase. The essential feature of the method of zeroing the resolvent, which produces complex energies, is the unlimited growth of the wave function at infinity, which is, however, eliminated by the time‐dependent interpretation. The real energies at which the unitary scattering matrix becomes real correspond to the largest possible distortion, , or its absence at which in either case leads to the formation of quasibound states. Depending on their response to the increasing electric intensity, two types of field‐induced positive energy quasibound levels are identified: electron‐ and hole‐like states. Their evolution and interaction in the enlarging field lead ultimately to the coalescence of pairs of opposite states, with concomitant divergence of the associated dipole moments in what is construed as an electric breakdown of the structure. The characteristic features of the coalescence fields and energies are calculated and the behavior of the levels in their vicinity is analyzed. Similarities between the different approaches and their peculiarities are highlighted; in particular, for the zero‐field bound state in the limit of the vanishing , all three methods produce the same results, with their outcomes deviating from each other according to growing electric intensity. The significance of the zero‐field spatial symmetry for the formation, number, and evolution of the electron‐ and hole‐like states, and the interaction between them, is underlined by comparing outcomes for the symmetric δ geometry and asymmetric Robin wall.

  相似文献   


18.
In the paper, for the Kerr field, we prove that Chandrasekhar's Dirac Hamiltonian and the self‐adjoint Hamiltonian with a flat scalar product of the wave functions are physically equivalent. Operators of transformation of Chandrasekhar's Hamiltonian and wave functions to the η representation with a flat scalar product are defined explicitly. If the domain of the wave functions of Dirac's equation in the Kerr field is bounded by two‐dimensional surfaces of revolution around the z axis, Chandrasekhar's Hamiltonian and the self‐adjoint Hamiltonian in the η representation are Hermitian with equality of the scalar products, .

  相似文献   


19.
The operation characteristics of nominal bilayer (BL) organic solar cells (OSCs), the active layers (ALs) of which consisted of sequentially casted bottom P3HT donor and top ICBA acceptor layers, resembled those of OSCs with bulk heterojunction (BHJ) ALs. Optical analysis and device simulations showed that such resemblance can be attributed to a similarity in the micromorphology of ALs; as‐deposited BL‐type ALs transformed spontaneously into BHJ‐type ALs. The inclusion of P3HT nanowires (NWs) in the donor layers resulted in different AL micromorphology and consequently a larger power conversion efficiency. Separate assessment of the exciton generation and charge–carrier transport and/or extraction showed that the contribution of P3HT NWs was more prominent in optical effects.

  相似文献   


20.
The recently discovered two‐dimensional oxide quasicrystal (OQC) derived from BaTiO3 on Pt(111) is the first material in which a spontaneous formation of an aperiodic structure at the interface to a periodic support has been observed. Herein, we report in situ low‐energy electron microscopy (LEEM) studies on the fundamental processes involved in the OQC growth. The OQC formation proceeds in two steps via of an amorphous two‐dimensional wetting layer. At 1170 K the long‐range aperiodic order of the OQC develops. Annealing in O2 induces the reverse process, the conversion of the OQC into BaTiO3 islands and bare Pt(111), which has been monitored by in situ LEEM. A quantitative analysis of the temporal decay of the OQC shows that oxygen adsorption on bare Pt patches is the rate limiting step of this dewetting process.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号