首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wide‐bandgap material based all‐dielectric metasurfaces have been ideal platforms for the realization of arbitrary phase control in visible spectrum. While TiO2 metasurfaces are very promising in broadband and high‐efficiency anomalous transmission, meta‐hologram, and meta‐lenses et al., the current realizations are strongly dependent on the sophisticated fabrication technique to fabricate TiO2 nano‐pillars with aspect ratio > 10. Herein we experimentally demonstrate a much simpler approach to realize efficient phase control of visible light. By exploiting TiO2 nano‐blocks as meta‐atoms on a ground metal plane, we find that TiO2 metasurface with aspect ratio around 1‐1.5 is good enough to produce phase changes covering ‐π to π and high reflection efficiency simultaneously. Based on the phase control of the meta‐reflectarray, anomalous reflection with a ratio between anomalous reflection and normal reflection ~ 74/26 have been experimentally realized using a combination of typical electron‐beam lithography, electron‐beam evaporation, and a simple lift‐off process. Similarly, high performance TiO2 metasurface in form of hologram has also been demonstrated for red (633 nm), green (520 nm), and blue (445 nm) wavelengths. We believe this research shall route a new way to cost‐effective all‐dielectric metasurfaces and advance their applications in encryption, anti‐counterfeiting, and wearable displays.  相似文献   

2.
Some physically interesting properties and effects (including the quantum effects) of wave propagation in biaxially anisotropic left‐handed materials are investigated in this paper: (i) we show that in the biaxially gyrotropic left‐handed material, the left‐right coupling of circularly polarized light arises due to the negative indices in permittivity and permeability tensors of gyrotropic media; (ii) it is well known that the geometric phases of photons inside a curved fiber in previous experiments often depend on the cone angles of solid angles subtended by a curve traced by the direction of wave vector of light, at the center of photon momentum space. Here, however, for the light propagating inside certain anisotropic left‐handed media we will present a different geometric phase that is independent of the cone angles; (iii) the extra phases of electromagnetic wave resulting from the instantaneous helicity inversion at the interfaces between left‐ and right‐handed (LRH) media is also studied in detail by using the Lewis‐Riesenfeld invariant theory. Some interesting applications (e.g., controllable position‐dependent frequency shift, detection of quantum‐vacuum geometric phases and helicity reversals at the LRH interfaces etc.) of above effects and phenomena in left‐handed media is briefly discussed.  相似文献   

3.
Interfacing anisotropic gold nanostructures with graphene can open up new avenues for modifying the light–matter interaction of graphene. A chemical route is explored to synthesize branched gold nanostructures on reduced graphene oxide (rGO) layers by in situ reduction, assisted by binary surfactant mixtures containing tetraoctylammonium bromide with cetyltrimethy­lammonium bromide, sodium dodecylsulfate, or sodium citrate. The hybrid material self‐assembles at a liquid/liquid interface forming a free‐standing film. Electron microscopy studies reveal the morphology, microstructure, and crystallinity of the hybrids. The gold nanostructures are branched in three dimensions and possess various shapes, such as irregular stars, multipods, and spiky features, interspersed with rGO layers. The hybrids exhibit plasmon modes in the visible and near‐infrared region due to the shape anisotropy. The enhancement effect of the spiky features is also observed in the Raman spectra. The growth mechanism of the branched nanostructures is followed by kinetic studies and indicates that the formation of multiple twinned crystals is the key factor for branching.  相似文献   

4.
5.
Graphene oxide (GO) is an attractive freestanding support that can be decorated with ultrathin organic layers for facile and low‐cost fabrication of novel devices with controllable functional properties and microstructures. Here, it is reported that a hybrid material consisting of an ultrathin iron phthalocyanine (FePc) layer self‐assembled on reduced graphene oxide (rGO) exhibits excellent catalytic activity that is superior to that of commercial Pt/C for an oxygen reduction reaction (ORR). During solution processing, the FePc layer is first self‐organized onto GO sheets and then reduced electrochemically to form an FePc/rGO hybrid electrocatalyst. Kinetics studies reveal that the hybrid architecture affords an ultrafast ORR rate caused by a strongly dominant four‐electron process, and the durability of the catalyst shows significant improvement by forming the hybrid structure. Spectroscopic studies suggest that these advantages are afforded by synergistic effects between FePc and rGO, which are enriched by the hybrid structure and the appropriate reduction step.  相似文献   

6.
7.
In this study, a novel graphene/g‐C3N4 microwave absorber is developed to solve the electromagnetic wave interference problem. Graphene/g‐C3N4 composite is synthesized by loading g‐C3N4 nanosheets on graphene through a simple liquid‐phase approach. High‐performance electromagnetic absorption performance can be achieved. The optimal reflection loss value is up to ?29.6 dB under a thin coating layer of 1.5 mm. At the same time, the corresponding absorption bandwidth of this composite can reach 5.2 GHz (12.8–18 GHz). Excellent electromagnetic absorption property may be attributed to the current attenuation theory which has been proven by replacing graphene with porous graphene or graphene oxide. The results reveal that free electron numbers and loading mass of g‐C3N4 on graphene play the key roles in the intensity of current attenuation and resistance value.  相似文献   

8.
Near‐infrared emissive (NIR) porphyrin‐implanted carbon nanodots (PCNDs or MPCNDs) are prepared by selectively carbonization of free base or metal complexes [M = Zn(II) or Mn(III)] of tetra‐(meso‐aminophenyl)porphyrin in the presence of citric acid. The as‐prepared nanodots exhibit spontaneously NIR emission, small size, good aqueous dispersibility, and favorable biocompatibility characteristic of both porphyrins and pristine carbon nanodots. The subcellular localization experiment of nanodots indicates a lysosome‐targeting feature. And the in vitro photodynamic therapy (PDT) results on HeLa cells indicate the nanodots alone have no adverse effect on tumor cells, but display remarkable photodynamic efficacy upon irradiation. Moreover, MnPCNDs containing paramagnetic Mn(III) ions, which possesses good biocompatibility, NIR luminescence, and magnetic resonance imaging and efficient singlet oxygen production, are further studied in magnetic resonance imaging‐guided photodynamic therapy in vivo.  相似文献   

9.
Achieving bright, reliable, robust, and stable probes for in vivo imaging is becoming extremely urgent for the cancer imaging research community. To date very few works have reported on elucidating in the varied and chemically complex biological milieu. The authors report detailed investigations of the synthesis of near‐infrared, water dispersive, strongly luminescent, and highly stable PbS/CdS/ZnS core/shell/shell quantum dots (QDs). These QDs are extremely stable, they could keep their initial morphology, dispersion status, and photoluminescence (PL) in phosphate buffered saline buffer for as long as 14 months. The QDs also show excellent photostability and could keep ≈80% of their initial PL intensity after 1 h continuous, strong UV illumination. More interestingly, they show negligible toxicity to cultured cells even at high QDs concentration. Given these outstanding properties, the QDs are explored for in vivo, tumor imaging in mice. With one order of magnitude lower QD concentration (0.04 mg mL–1), significantly weaker laser intensity (0.04 W cm–2 vs ≈1 W cm–2), and considerably shorter signal integration time (≤1 ms vs hundreds of ms) as compared to the best reported rare earth doped nanoparticles, the QDs show high emission intensity even at injection depth of ≈2.5 mm.  相似文献   

10.
11.
Simultaneous scattering invisibility and free‐space field enhancement have been achieved based on multipolar interferences among all‐dielectric nanoparticles. The scattering properties of all‐dielectric nanowire quadrumers are investigated and two sorts of scattering invisibilities have been identified: the trivial invisibility where the individual nanowires are not effectively excited; and the nontrivial invisibility with strong multipolar excitations within each nanowire, which results in free‐space field enhancement outside the particles. It is revealed that such nontrivial invisibility originates from not only the simultaneous excitations of both electric and magnetic resonances, but also their significant magnetoelectric cross‐interactions. We further show that the invisibility obtained is both polarization and direction selective, which can probably play a significant role in various applications including non‐invasive detection, sensing, and non‐disturbing medical diagnosis with high sensitivity and precision.  相似文献   

12.
Niobium nitride/nitrogen‐doped graphene nanosheet hybrid materials are prepared by a simple hydrothermal method combined with ammonia annealing and their electrochemical performance is reported. It is found by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the as‐obtained niobium nitride nanoparticles are about 10–15 nm in size and homogeneously anchored on graphene. A non‐aqueous lithium‐ion capacitor is fabricated with an optimized mass loading of activated carbon cathode and the niobium nitride/nitrogen‐doped graphene nanosheet anode, which delivers high energy densities of 122.7–98.4 W h kg?1 at power densities of 100–2000 W kg?1, respectively. The capacity retention is 81.7% after 1000 cycles at a current density of 500 mA g?1. The high energy and power of this hybrid capacitor bridges the gap between conventional high specific energy lithium‐ion batteries and high specific power electrochemical capacitors, which holds great potential applications in energy storage for hybrid electric vehicles.  相似文献   

13.
14.
15.
Protein‐protected gold nanoclusters with emission in the near‐infrared wavelength range have been widely considered for applications in biomedical fields. However, their quantum yield (QY) remains low, thus limiting their practical applications. Herein, a novel strategy to synthesize bovine serum albumin–encapsulated gold nanoclusters (BSA‐AuNCs) with QY of 23% is developed. Assembled coordination polymers (supramolecules) of Au(I)‐BSA complexes are initially formed because of the intermolecular forces between BSA ligands. The forces are easily controlled by pH level during the reaction, leading to significant change in the photoluminescence of BSA‐AuNCs. By regulating the pH and reaction temperature, Au(0)@Au(I) core‐shell structured BSA‐AuNCs are fabricated in 2 h. Importantly, such AuNCs are in a rigidified state with high Au(I) content in the shell, offering an explanation for their high luminescence character. Further increasing QY to 29% is achieved by confining BSA‐AuNCs into a cationic polymer, poly(allylamine) hydrochloride (AuNCs@PAH). Enhanced cellular uptake and improved sensitivity of AuNCs@PAH to glutathione compared to BSA‐AuNCs is demonstrated. These findings may give insights into the synergistic effect of pH level and reaction temperature on the properties of protein‐encapsulated AuNCs and provide a possible way for up‐scaled fabrication of brighter AuNCs protected by other protein templates.  相似文献   

16.
Mid‐infrared ultrafast lasers have emerged as a promising platform for both science and industry because of their inherent high raw power and eye‐safe spectrum. 2D nanostructures such as graphene have emerged as promising photonic materials for laser mode‐locking to generate ultrashort pulses. However, there are still many unanswered questions about graphene's key advantages to be practical devices, especially over the matured semiconductor saturable absorber mirror (SESAM). In this work, we conducted systematic comparisons on the nonlinear optical properties of graphene and that of a commercial SESAM at 2 μm wavelength. Our results showed that graphene has significant advantages over the commercial SESAM, exhibiting ∼28% less absorptive cross‐section ratio of excited‐state to ground‐state and ∼50 times faster relaxation time. This implies that graphene can be exploited as a better mode‐locker than the current commercial SESAM for high power, high repetition rate and ultrafast mid‐infrared laser sources.  相似文献   

17.
18.
Graphene—2D carbon—has received significant attention thanks to its electronic, thermal, and mechanical properties. Recently, nano‐graphene (nGr) has been investigated as a possible platform for biomedical applications. Here, a polymer‐coated nGr to deliver drugs to glioblastoma after systemic administration is reported. A biodegradable, biocompatible poly(lactide) (PLA) coating enables encapsulation and controlled release of the hydrophobic anticancer drug paclitaxel (PTX), and a hydrophilic poly(ethylene glycol) (PEG) shell increases the solubility of the nGr drug delivery system. Importantly, the polymer coating mediates the interaction of nGr with U‐138 glioblastoma cells and decreases cytotoxicity compared with pristine untreated nGr. PLA‐PEG‐coated nGr is also able to encapsulate PTX at 4.15 wt% and sustains prolonged PTX release for at least 19 d. PTX‐loaded nGr‐PLA‐PEGs are shown to kill up to 20% of U‐138 glioblastoma cells in vitro. Furthermore, nGr‐PLA‐PEG and CNT‐PLA‐PEG, two carbon nanomaterials with different shapes, are able to kill U‐138 in vitro as well as free PTX at significantly lower doses of drug. Finally, in vivo biodistribution of nGr‐PLA‐PEG shows accumulation of nGr in intracranial U‐138 glioblastoma xenografts and organs of the reticuloendothelial system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号