首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
张刚  张永伟 《中国物理 B》2017,26(3):34401-034401
Two-dimensional(2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides(e.g., Mo S2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of Mo S2 and the new strategy for thermal management of Mo S2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator.  相似文献   

2.
Beyond graphene, the layered transition metal dichalcogenides(TMDs) have gained considerable attention due to their unique properties. Herein, we review the lattice dynamic and thermal properties of monolayer TMDs, including their phonon dispersion, relaxation time, mean free path(MFP), and thermal conductivities. In particular, the experimental and theoretical studies reveal that the TMDs have relatively low thermal conductivities due to the short phonon group velocity and MFP, which poses a significant challenge for efficient thermal management of TMDs-based devices. Importantly,recent studies have shown that this issue could be largely addressed by connecting TMDs and other materials(such as metal electrode and graphene) with chemical bonds, and a relatively high interfacial thermal conductance(ITC) could be achieved at the covalent bonded interface. The ITC of MoS_2/Au interface with chemical edge contact is more than 10 times higher than that with physical side contact. In this article, we review recent advances in the study of TMD-related ITC.The effects of temperature, interfacial vacancy, contact orientation, and phonon modes on the edge-contacted interface are briefly discussed.  相似文献   

3.
Bulk nanomaterials based on sp2 carbon nanopolymorphs are promising candidates for supercapacitors due to their unique properties such as extremely high specific surface area, high conductivity and stability against graphitization. However, the mechanical response of such materials to external loading is not understood well. This Letter studies the effect of hydrostatic pressure on the mechanical properties and structures of these materials via molecular dynamics simulations. Three types of nanopolymorphs‐based nanomaterials that are composed of bended graphene flakes, short carbon nanotubes and fullerenes are considered. It is found that these three materials show a distinct relation between the pressure and volume strain. Moreover, their resistance to graphitization depends on the structure of their constituent components. The phenomena are explained by analysing the radial distribution function and coordination numbers of the atoms. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Bottom‐up assembly by dielectrophoresis (DEP) has emerged in recent years as a viable alternative to conventional top–down fabrication of electronic devices from nanomaterials, particularly carbon nanotubes and graphene. Here, we demonstrate how this technique can be extended to fabricate devices containing carbon nanotubes and graphene suspended between two electrodes over a back‐gate electrode. The suspended device geometry is critical for the development of nano‐electromechanical devices and to extract maximum performance out of electronic and optoelectronic devices. This technique allows for parallel assembly of devices over large scale. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
S. Behnia  F. Rahimi 《Physics letters. A》2018,382(45):3274-3280
A theoretical analysis of controllable metal–insulator transition is performed by carrying out a quantum chaos analysis for a single-walled carbon nanotube which is affected by topological Stone–Wales defect. Nanotubes have recently attracted attention as promising materials for flexible nanoelectronic devices. Individual topological Stone–Wales defects have been identified experimentally in carbon nanotubes (CNTs) and graphene. The findings reveal that defected CNT displays a gradual crossover from metal to insulator phase in a longitudinal electric field. By determining the threshold value of the electric field for metal–insulator transition, CNT may be used as a switch in electronic devices. Our results are obtained by calculating the singularity spectrum of a nearest-neighbor tight-binding model. Also, quantum chaos theory is used for obtaining a detailed understanding of a dynamic phase transition from delocalized states (chaotic) to localized states (Poisson). More interestingly, the appearance of negative differential resistance for pure CNT suggests potential applications in nanoelectronic devices.  相似文献   

6.
Abstract

In recent years, many nanomaterials-assisted chemiluminescence (CL) systems have been developed to improve the sensitivity and to expand the scope of their analytical applications. In these new systems, nanomaterials participate in CL reactions as catalysts, labels, reductants, luminophors, or energy acceptors. This review mainly focuses on the recent analytical applications of metal nanoparticles, magnetic nanoparticles, quantum dots (QDs), and carbon-based nanomaterials (carbon nanotubes and graphene) in liquid-phase CL systems. Recent advances in electrochemiluminescence based on nanotechnology and its analytical applications, especially in immunoassay, DNA analysis, and other biological analyses, are also summarized. Finally, we discuss some critical challenges in this field and speculate about their solutions. A total of 177 references mainly in the last 5 years are included in this review.  相似文献   

7.
于远方  缪峰  何军  倪振华 《中国物理 B》2017,26(3):36801-036801
Two-dimensional(2D) materials, e.g., graphene, transition metal dichalcogenides(TMDs), and black phosphorus(BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potential in optoelectronic applications. High-performance and multifunctional devices were achieved by employing diverse designs, such as hybrid systems with nanostructured materials, bulk semiconductors and organics, forming 2D heterostructures. In this review,we mainly discuss the recent progress of 2D materials in high-responsive photodetectors, light-emitting devices and single photon emitters. Hybrid systems and van der Waals heterostructure-based devices are emphasized, which exhibit great potential in state-of-the-art applications.  相似文献   

8.
Abstract

The effects of filling an epoxy matrix modified with “Viniflex” with carbon nanotubes, fullerene C60, or graphene on the mechanical properties, surface morphologies and glass transition temperatures of the composite materials obtained after curing were studied. It was shown that the largest decrease in glass transition temperature and an increase in impact strength was achieved by the introduction of 0.1 mass% graphene. Filling with graphene and carbon nanotubes increased the bending strength while filling with C60 fullerenes provided the greatest compressive strength and elasticity modulus. An explanation of the results was based on ideas about the relationship of the geometrical shape of the nanofiller to the load direction and features of the phase composition of the composite materials. It is suggested that the carbon nanomaterials had a template effect on the packing of the epoxy matrix chains.  相似文献   

9.
Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) represent a novel class of low-dimensional materials. All these graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties of graphene and are thus promising candidates for a wide range of nanoscience and nanotechnology applications. In this paper, the electronic and quantum transport properties of these carbon nanomaterials are reviewed. Although these systems share the similar graphene electronic structure, confinement effects are playing a crucial role. Indeed, the lateral confinement of charge carriers could create an energy gap near the charge neutrality point, depending on the width of the ribbon, the nanotube diameter, the stacking of the carbon layers regarding the different crystallographic orientations involved. After reviewing the transport properties of defect-free systems, doping and topological defects (including edge disorder) are also proposed as tools to taylor the quantum conductance in these materials. Their unusual electronic and transport properties promote these carbon nanomaterials as promising candidates for new building blocks in a future carbon-based nanoelectronics, thus opening alternatives to present silicon-based electronics devices.  相似文献   

10.
黑磷是继石墨烯、过渡金属硫族化合物(TMDCs)之后又一个备受关注的二维材料.黑磷从单层到块材都是直接带隙半导体,且带隙从单层的1.7 eV一直随着层数的增加而减小,到块材则变为0.3 eV,涵盖了可见光到中红外波段,恰好填补了石墨烯和过渡金属硫族化合物的带隙在该波段的空白.同时,黑磷还具有很高的载流子迁移率、良好的调控性、面内各向异性等优异特性,很快便引起了人们广泛的研究兴趣.本论文主要介绍了当前有关二维黑磷光学性质方面的研究进展,包括黑磷的本征光学性质,如带间跃迁吸收、激子、光致发光、光学性质的稳定性;外界微扰,如应变、电场等对黑磷光学性质的影响;最后做了总结与展望.希望本文对黑磷光学性质研究的综述,能够引起对黑磷研究的更广泛兴趣.  相似文献   

11.
The interest in graphene (a carbon monolayer) adsorbed on metal surfaces goes back to the 60's, long before isolated graphene was produced in the laboratory. Owing to the carbon-metal interaction and the lattice mismatch between the carbon monolayer and the metal surface, graphene usually adopts a rippled structure, known as moiré, that confers it interesting electronic properties not present in isolated graphene. These moiré structures can be used as versatile templates where to adsorb, isolate and assemble organic-molecule structures with some desired geometric and electronic properties. In this review, we first describe the main experimental techniques and the theoretical methods currently available to produce and characterize these complex systems. Then, we review the diversity of moiré structures that have been reported in the literature and the consequences for the electronic properties of graphene, attending to the magnitude of the lattice mismatch and the type of interaction, chemical or physical, between graphene and the metal surface. Subsequently, we address the problem of the adsorption of single organic molecules and then of several ones, from dimers to complete monolayers, describing both the different arrangements that these molecules can adopt as well as their physical and chemical properties. We pay a special attention to graphene/Ru(0001) due to its exceptional electronic properties, which have been used to induce long-range magnetic order in tetracyanoquinodimethane (TCNQ) monolayers, to catalyze the (reversible) reaction between acetonitrile and TCNQ molecules and to efficiently photogenerate large acenes.  相似文献   

12.
陆晶晶  冯苗  詹红兵 《物理学报》2013,62(1):14204-014204
石墨烯及其衍生物作为新型碳纳米结构,由于其优异的光限幅性能而受到广泛关注,但现有的工作多侧重于其在液相体系中光限幅效应及其起因研究.本文以壳聚糖为成膜基质,将氧化石墨烯(GO)与壳聚糖(CS)在液相中均匀共混后成膜,对比研究GO溶液和GO-CS复合膜的光限幅效应及其起因.结果表明在线性透过率相同的情况下,GO在固相基质中表现出比液相基质更强的光限幅效应和更弱的非线性散射.这说明不同于碳纳米管简单的非线性散射,在GO中可能存在多种非线性光学效应.  相似文献   

13.
Two-dimensional(2D) materials have been a very important field in condensed matter physics, materials science, chemistry, and electronics. In a variety of 2D materials, transition metal chalcogenides are of particular interest due to their unique structures and rich properties. In this review, we introduce a series of 2D transition metal chalcogenides prepared by epitaxial growth. We show that not only 2D transition metal dichalcogenides can be grown, but also the transition metal chalcogenides that do not have bulk counterparts, and even patterned transition metal chalcogenides can be fabricated. We discuss the formation mechanisms of the novel structures, their interesting properties, and potential applications of these 2D transition metal chalcogenides. Finally, we give a summary and some perspectives on future studies.  相似文献   

14.
李梓维  胡义涵  李瑜  方哲宇 《中国物理 B》2017,26(3):36802-036802
In the last decade, the rise of two-dimensional(2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light–matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plasmonic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light–matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is comprehensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.  相似文献   

15.
Graphene photonics has emerged as a promising platform for providing desirable optical functionality. However, graphene's monolayer‐scale thickness fundamentally restricts the available light matter interaction, posing a critical design challenge for integrated devices, particularly in wavelength regimes where graphene plasmonics is untenable. While several plasmonic designs have been proposed to enhance graphene light interaction in these regimes, they suffer from substantial insertion loss due to metal absorption. Here we report a non‐resonant metamaterial‐based waveguide platform to overcome the design bottleneck associated with graphene device. Such metamaterial structure enables low insertion loss even though metal is being utilized. By examining waveguide dispersion characteristics via closed‐form analysis, it is demonstrated that the metamaterial approach can provide optimized optical field that overlaps with the graphene monolayer. This enables graphene‐based integrated components with superior optical performance. Specifically, the metamaterial‐assisted graphene modulator can provide 5‐fold improvement in extinction ratio compared to Si nanowire, while reducing insertion loss by one order magnitude compared to plasmonic structures. Such a waveguide configuration thus allows one to maximize the optical potential that graphene holds in the telecom and visible regimes.  相似文献   

16.
Carbon nanotubes and graphene are carbon-based materials, which possess not only unique structure but also properties such as high surface area, extraordinary mechanical properties, high electronic conductivity, and chemical stability.Thus, they have been regarded as an important material, especially for exploring a variety of complex catalysts. Considerable efforts have been made to functionalize and fabricate carbon-based composites with metal nanoparticles. In this review,we summarize the recent progress of our research on the decoration of carbon nanotubes/graphene with metal nanoparticles by using polyoxometalates as key agents, and their enhanced photo-electrical catalytic activities in various catalytic reactions. The polyoxometalates play a key role in constructing the nanohybrids and contributing to their photo-electrical catalytic properties.  相似文献   

17.
We present a joint theory-experiment study investigating the excitonic absorption of spiropyran-functionalized carbon nanotubes. The functionalization is promising for engineering switches on a molecular level, since spiropyrans can be reversibly switched between two different conformations, inducing a distinguishable and measurable change of optical transition energies in the substrate nanotube. Here, we address the question of whether an optical read-out of such a molecular switch is possible. Combining density matrix and density functional theory, we first calculate the excitonic absorption of pristine and functionalized nanotubes. Depending on the switching state of the attached molecule, we observe a red-shift of transition energies by about 15?meV due to the coupling of excitons with the molecular dipole moment. Then we perform experiments measuring the absorption spectrum of functionalized carbon nanotubes for both conformations of the spiropyran molecule. We find good qualitative agreement between the theoretically predicted and experimentally measured red-shift, confirming the possibility for an optical read-out of the nanotube-based molecular switch.  相似文献   

18.
19.
Conference Reports are meant to offer an authoritative view on a recently held scientific meeting rather than a comprehensive list of the conference presentations. Authors are invited to describe what they feel were the most interesting contributions. The Kirchberg Winterschool provided a platform for reviewing and discussing new developments in the field of electronic properties of molecular nanostructures and their applications such as carbon nanotubes, graphene and single molecules. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We review the optical phonon dispersions of graphene. In particular, we focus on the presence of two Kohn anomalies in the highest optical phonon branch at the and points of the Brillouin zone. We then show how graphene can be used as a model for the calculation of phonons in carbon nanotubes. Finally, we present the beyond Born-Oppenheimer corrections to their phonon dispersions. These are experimentally revealed in the Raman spectra of doped samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号