首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron scattering from boundaries and impurities destroys the single-particle picture of the electron–phonon interaction. We show that quantum interference between ‘pure‘ electron–phonon and electron–boundary/impurity scattering may result in the reduction as well as to the significant enlargement of the electron dephasing rate. This effect crucially depends on the extent, to which electron scatterers, such as boundaries and impurities, are dragged by phonons. Static and vibrating scatterers are described by two dimensionless parametersqTl and qTL, where q is the wavevector of the thermal phonon, l is the total electron mean-free path, L is the mean-free path due to scattering from static scatterers. According to the Pippard ineffectiveness condition , without static scatterers the dephasing rate at low temperatures is slower by the factor 1 / ql than the rate in a pure bulk material. However, in the presence of static potential the dephasing rate turns out to be 1 / qL times faster. Thus, at low temperatures electron dephasing and energy relaxation may be controlled by electron boundary/impurity scattering in a wide range.  相似文献   

2.
The appearance of unconventional pairing in superconducting cuprates is examined from a microscopic model, taking into account important properties of hole‐doped copper oxides. An exchange interaction between fermions and dominantly inter‐site bipolarons is considered to be the mechanism which leads to the pairing. Its momentum dependency is connected to the well‐established fermion–phonon anomalies in cuprate superconductors. Since charge carriers in these materials are strongly correlated, a screened Coulomb repulsion is added to this exchange term. Any ad hoc assumptions like anisotropy are avoided, but a microscopic explanation of unconventional pairing for coupling strengths that are in accordance with experimental facts is provided. One important outcome is a mathematically rigorous elucidation of the role of Coulomb repulsion in unconventional pairing, which is shown to be concomitant with a strong depletion of superconducting pairs. The theory, applied to the special case of LaSr 214, predicts at optimal doping i) a coherence length of 21 Å , which is the same as that obtained from the Ginzburg–Landau critical magnetic field measured for this material, and ii) d‐wave pair formation in the pseudogap regime, that is, at temperatures much higher than the superconducting transition temperature.  相似文献   

3.
We performed density functional theory calculations using niobium (Nb) as a model system of a conventional superconductor, to correlate the distortion of twin defects with the electron–phonon coupling properties. Calculations using different settings of the Nb elementary cell (relaxed, distorted, super cell with zig‐zag twin defect) showed that only by including real structure elements into the setting, the Eliashberg spectral function representing the electron–phonon coupling properties was derived convincingly. Based on these density functional theory calculations of the electron–phonon cou‐ pling properties of Nb, we suggest a model for a combined superconducting/charge density wave ground state which uses a lattice distortion induced into the crystal by two‐dimensional defects as modulated background potential of the charge density wave phase. The coexistence of both phases is hereby necessary for a fine‐tuning of the Fermi surface within the small local domain of the defect to match the wavelength of the lattice distortion and the Fermi wavelength by pairing fermions to bosons. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
Electron–phonon coupling (EPC) is an important issue in semiconductor physics because of its significant influence on the optical and electrical properties of semiconductors. In this work, the EPC in wide bandgap semiconductors including hexagonal BN and AlN was studied by deep UV resonance Raman spectroscopy. Up to fourth‐order LO phonons are observed in the resonance Raman spectrum of hexagonal AlN. By contrast, only the prominent emission band near the band‐edge and the Raman band attributed to E2g mode are detected for hexagonal BN with deep UV resonance excitation. The different behavior in resonant Raman scattering between the III‐nitrides reflects their large difference in EPC. The mechanism for EPC in hexagonal BN is the short‐range deformation interaction, while that in hexagonal AlN is mainly associated with the weak long‐range Fröhlich interaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A magnon–phonon interaction model is developed on the basis of two-dimensional square Heisenberg ferromagnetic system. By using Matsubara Green function theory transverse acoustic phonon excitation is studied and transverse acoustic phonon excitation dispersion curves is calculated on the main symmetric point and line in the first Brillouin zone. On line Σ it is found that there is hardening for transverse acoustic phonon on small wave vector zone (nearby point Γ), there is softening for transverse acoustic phonon on the softening zone and there is hardening for transverse acoustic phonon near point M. On line Δ it is found there is no softening and hardening for transverse acoustic phonon. On line Z it is found that there is softening for transverse acoustic phonon on small wave vector zone (nearby point X) and there is hardening for transverse acoustic phonon nearby point M. The influences of various parameters on transverse acoustic phonon excitation are also explored and it is found that the coupling of the magnon–phonon and the spin wave stiffness constant play an important role for the softening of transverse acoustic phonon.  相似文献   

6.
Resonance enhancement of one‐phonon, two‐phonon, and two‐magnon Raman scattering in a general, exactly solvable, multiband model is explained in a way that is in accordance with the general analytical properties of the total optical conductivity tensor. Using this approach, the charge‐transfer limit of the Emery three‐band model is examined to explain resonance enhancement of the two‐magnon Raman spectra of high‐Tc cuprates, which is found in experiments to be of 3 orders of magnitude. While previous Raman and optical conductivity analyzes of the cuprates, based on the single‐band Hubbard model, are found to be consistent with the picture where one hole per one CuO2 unit is localized on the Cu ion, the present three‐band approach allows the study of the opposite, strong copper‐oxygen hybridization limit, which is found to be in agreement with the results of nuclear magnetic resonance (NMR) and one‐phonon Raman scattering experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
C M Srivastava 《Pramana》1989,32(3):251-267
A theory of high temperature superconductivity in YBa2Cu3O7_δ compound has been developed on the basis of the momentum pairing of electrons through the relativistic Darwin interaction. The transport behaviour of electrons is explained in terms of a mechanism of correlated electron transfer arising from the electron-phonon coupling. A model Hamiltonian has been developed to describe the superconducting properties of the system. This gives an energy gap which is higher than the BCS value. Attempts have been made to explain the absence of isotope effect, the linear dependence of specific heat, the presence of larger temperature-independent paramagnetism in the normal phase and the softening of some of the optic phonon modes observed in this system.  相似文献   

8.
Few‐layer graphene grown by chemical vapor deposition has been studied by Raman and ultrafast laser spectroscopy. A low‐wavenumber Raman peak of ~120 cm−1 and a phonon‐induced oscillation in the kinetic curve of electron–phonon relaxation process have been observed, respectively. The Raman peak is assigned to the low‐wavenumber out‐of‐plane optical mode in the few‐layer graphene. The phonon band shows an asymmetric shape, a consequence of so‐called Breit‐Wigner‐Fano resonance, resulting from the coupling between the low‐wavenumber phonon and electron transitions. The obtained oscillation wavenumber from the kinetic curve is consistent with the detected low‐wavenumber phonon by Raman scattering. The origin of this oscillation is attributed to the generation of coherent phonons and their interactions with photoinduced electrons. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The design and the commissioning results of a portable and compact spectrometer for the high harmonics content characterization of the extreme‐ultraviolet radiation of FLASH (free‐electron laser in DESY, Hamburg, Germany) are presented. The instrument is a grazing‐incidence flat‐field spectrometer equipped with two variable‐line‐spaced gratings; it covers the 2–40 nm wavelength region with a spectral resolution in the 0.1–0.2% range. Both spectral and intensity fluctuations of the fundamental emission and the harmonics are monitored.  相似文献   

10.
Energy‐resolved electron‐yield X‐ray absorption spectroscopy is a promising technique for probing the near‐surface structure of nanomaterials because of its ability to discriminate between the near‐surface and bulk of materials. So far, the technique has only been used in model systems. Here, the local structural characterization of nanoporous cobalt‐substituted aluminophosphates is reported and it is shown that the technique can be employed for the study of open‐framework catalytically active systems. Evidence that the cobalt ions on the surface of the crystals react differently to those in the bulk is found.  相似文献   

11.
First‐order and multiphonon Raman active excitations are studied in YbVO3 as a function of temperature in the orthorhombic and monoclinic phases. Below T ≃ 170 K, a G‐type orbital ordering with a concomitant monoclinic transition occurs. They enhance the phonon polarizabilities, allowing the resolution of room‐temperature bands, and activate new excitations around 700 cm−1. Below T ∼ 65 K, the 700 cm−1 excitations disappear, indicating a C‐type orbital ordering and a return to the orthorhombic structure. The observed phonon combinations around 1400 cm−1 with a dominant Jahn‐Teller vibration at ∼690 cm−1 reflect a possible orbiton‐phonon coupling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, linear and non‐linear structures of ion‐acoustic waves (IAWs) are investigated in a collisional plasma consisting of warm ions, superthermal electrons, and positrons. A dissipative effect is assumed due to ion‐neutral collisions. The linear properties of IAWs are investigated. It is shown that the dynamics of the IAWs is governed by the damped Korteweg‐de Vries (K‐dV) equation. It is seen that the ion‐neutral collisions modify the basic features of ion‐acoustic solitary waves significantly. Also, the effect of the plasma parameters on the dissipative IAWs is discussed in detail.  相似文献   

13.
Effects of plasma nonextensivity on the nonlinear cnoidal ion‐acoustic wave in unmagnetized electron‐positron‐ion plasma have been investigated theoretically. Plasma positrons are taken to be Maxwellian, while the nonextensivity distribution function was used to describe the plasma electrons. The known reductive perturbation method was employed to extract the KdV equation from the basic equations of the model. Sagdeev potential, as well as the cnoidal wave solution of the KdV equation, has been discussed in detail. We have shown that the ion‐acoustic periodic (cnoidal) wave is formed only for values of the strength of nonextensivity (q). The q allowable range is shifted by changing the positron concentration (p) and the temperature ratio of electron to positron (σ). For all of the acceptable values of q, the cnoidal ion‐acoustic wave is compressive. Results show that ion‐acoustic wave is strongly influenced by the electron nonextensivity, the positron concentration, and the temperature ratio of electron to positron. In this work, we have investigated the effects of q, p, and σ on the characteristics of the ion‐acoustic periodic (cnoidal) wave, such as the amplitude, wavelength, and frequency.  相似文献   

14.
Solvent‐dependent diverse reactivity of (anthracen‐9‐yl)methyl sulfides with a few electron‐deficient acetylenes is described. Diversity in reactivity is attributed to competition between one electron transfer, two electron transfer and Diels–Alder reaction of these sulfides with electron‐deficient acetylenes. We have proposed plausible mechanisms to account for various reactions observed by us. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We report the appearance and enhancement in intensity of impurity related local vibrational modes in Bi2O3 : Ho micro‐rods along with normal modes. Pure and Ho‐doped Bi2O3 micro‐rods were synthesized by conventional co‐precipitation method at 60 °C. The structural and morphological studies were carried out using powder X‐ray diffraction technique and scanning electron microscopy, respectively. Raman spectroscopic studies reveal the existence of local phonon vibrational modes (LVM) due to the incorporation of Ho3+. Harmonic approximation method was employed to find the dopant‐related peak in the Raman spectra. Variation in full width at half maximum for LVM with increase in Ho3+ was also investigated. This increase in FWHM indicates the decrease in crystallinity of the doped samples. The phonon lifetime calculation carried out for each samples and the decrease in phonon lifetime with doping concentration make this material a potential candidate for optical and electronic applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
We systematically examined the effects of number‐of‐layer, pressure, and temperature on the bond length and energy, Debye temperature, atomic cohesive energy, and binding energy density for layered black phosphorus using bond–phonon–photon spectrometric methods. We clarified the following: (1) atomic under‐coordination shortens and stiffens the P P bond, which raises the B2g and Ag2 phonon frequency and widens the bandgap, (2) bond thermal elongation and weakening soften all phonon modes, and (3) bond mechanical compression has the opposite effect of heating on phonon frequency relaxation. The phonon and photon energy depends on the bond length and energy, which determines the relevant elasticity and thermal stability of layered structure. More broadly, the approaches and findings of this work provide both insight into and efficient tools for further exploration of unusual behaviors of other two‐dimensional substance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
We present numerical simulations of the acoustic‐phonon‐limited mobility, $ \mu _{\rm ac}, $ and phonon‐drag thermopower, S^{\rm g},$ in two‐dimensional electron gases confined in MgZnO/ZnO heterostructures. The calculations are based on the Boltzmann equation and are made for temperatures in the range 0.3–20 K and sheet densities 0.5–30 × 1015 m–2. The theoretical estimations of \mu _{\rm ac} $ are in good agreement with the experiment without any adjustable parameters. We find that the magnitude of \mu _{\rm ac} $ is dramatically decreased in relation to GaAs‐based heterostructures. The phonon‐drag thermopower, S^{\rm g},$ which according to Herring's expression is inversely proportional to \mu _{\rm ac} is severely increased exceeding 200 mV/K at T = 5 K depending on sheet density. The giant values of S^{\rm g} $ lead to a strong improvement of the figure of merit ZT at low temperatures. Our findings suggest that MgZnO/ZnO heterostructures can be candidates for good thermoelectric materials at cryogenic temperatures. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Using the model presented in the preceding paper we investigate the effects of charge fluctuations (CF) on the phonon dispersion of YBa2Cu3O6 (O6) and YBa2Cu3O7 (O7). Starting from an ab-initio rigid-ion model as a reference system, CF are allowed for at the copper- and oxygen ions. The CF are treated as adiabatic electronic degrees of freedom. Within the rigid-ion model (RIM) the structural parameters are calculated by minimization of the energy. The results agree reasonably well with the experiment, indicating the suitability of the ionic model as a starting point and the importance of ionic forces for the properties of the high-temperature superconductors (HTSC) in general. Next, the phonon dispersion is calculated in the RIM as well as including CF additionally and the renormalization of the individual modes is discussed. By restricting the CF optionally to the planes, effects arising specifically from CF in the planes on the one hand and from CF in the chain as well as at the axial bridging oxygens (O4) on the other hand can be separated. We find the oxygen axial modes at the γ- and Z point (A1g/A in O6, Ag/B in O7) particularly interesting. Most of these modes show considerable renormalizations. Moreover, the γ/Z-axial modes are characterized by the possibility of having CF of the same sign in the whole CuO planes what distinguishes them from the modes at other symmetry points. In particular, the Z-point axial modes are singular in having CF of alternating sign in consecutive structural units in c direction. Such a “c-direction-charge-transfer” has been shown previously to be an effective screening mechanism in La2CuO4. Indeed, we find a drastic renormalization of the plane-oxygen Ag mode at the Z point (Ag(O23;Z)) in O7 (oxygen ions in neighboring planes vibrating in-phase), at least in the adiabatic approximation used here. In the insulating phase this mode exhibits, on the other hand, very large changes of the potential at the ion sites, whereas its renormalization is moderate only. The reason for this behaviour is that in the insulating phase in case of a two-dimensional electronic structure the charge transfer (screening) is restricted locally in the structural unit and long-range charge transfer is not possible as in the metal. However, a strong suppression of screening for this mode can also be expected for the metallic phase in O7 in case non-adiabatic electron-phonon coupling would be important. The Ag (O23;Z)-mode thus seems to be by far the most interesting mode in O7. These features are directly related to the layered structure of the HTSC compounds considered here. The O4-axial-breathing modes show significant renormalizations too, and are characterized by plane-chain charge transfer. Moreover, besides the O23- and O4-modes, the yttrium modes appear to be important too. In addition to the phonon-dispersion curves, we present values for the CF amplitudes and screened site-potential changes at the copper-and oxygen ions. Finally, we give transverse effective charges and dielectric constants for the insulating phase (O6) as calculated within our formalism.  相似文献   

19.
Time‐resolved two color pump‐probe polarization spectroscopy was performed at room temperature on SrTiO3 films grown directly on Si with film thickness varying from 2 nm to 7.8 nm. An E‐symmetry mode with a characteristic frequency of 0.2 THz is impulsively generated and measured in these coherently strained tetragonal phase SrTiO3 thin films. A superimposed exponentially decaying signal observed indicates the possible relaxational hopping of Ti ion between double potential wells. The dependence of the coherent phonon signal on pump and probe laser polarization helps to identify the symmetry of the phonon modes.  相似文献   

20.
In this paper we present a microscopic model that allows us to study the effects of charge fluctuations on the phonon dispersion of the high-temperature superconductor YBa2Cu3O7 and its insulating counterpart, YBa2Cu3O6. An ab-initio rigid-ion model with pair potentials calculated by the Gordon-Kim method from the free-ion charge densities is used as a reference system. Starting from this reference system, charge fluctuations at the copper- and oxygen ions are introduced into the model. The charge fluctuations are treated as adiabatic degrees of freedom in a non-phenomenological way. The parameters entering the model are estimated consistently with the reference system from first principles rather than refering to the experimentally determined phonon dispersion. In addition to the metallic behavior (appropriate to YBa2Cu3O7) obtained in this way, insulating behavior (appropriate to YBa2Cu3O6) is simulated by requiring the polarizability function to fulfill a corresponding long. wavelength sum rule. Screened site-potential changes are defined that (besides the charge fluctuations) constitute a qualitative measure of the electron-phonon-interaction potential. Furthermore we investigate the long-wavelength limiting behavior of the most important quantities occurring in our formalism. We derive formulae that allow us to calculate the contribution of the charge fluctuations to the macroscopic dielectric constant and the transverse effective charges in the insulating phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号