首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the hidden conformed symmetry, some authors have proposed a Harrison metric for the Schwarzschild black hole. We give a procedure which can generate a family of Harrison metrics starting from a general set of SL(2, R) vector fields. By analogy with the subtracted geometry of the Kerr black hole, we find a new Harrison metric for the Schwaxzschild case. its conformal generators axe also investigated using the Killing equations in the near-horizon limit.  相似文献   

2.
Quantum Statistical Entropy of Black Hole   总被引:1,自引:0,他引:1  
By using the method of quantum statistics, we derive the partition function of bosonic and fermionic field in various coordinates and obtain the integral expression of the entropy of a black hole. Then via the improved brick-wall method, membrane model, we obtain that if we choose proper parameter, the entropy of black hole is proportional to the area of horizon. In our result, the stripped term and the divergent logarithmic term in the original brick-wall method no longer exist. We offer a new simple and direct way of calculating the entropy of black holes in various coordinates.  相似文献   

3.
Hawking radiation can be viewed as a process of quantum tunnelling near black hole horizon. When a particle with angular momentum tunnels across the event horizon of Schwarzschild black hole, the black hole will change into a Kerr black hole. The emission rate of the massless particles with angular momentum is calculated, and the result is consistent with an underlying unitary theory.  相似文献   

4.
The surface gravity of Schwarzschild black hole can be quantized from the test particle moving around different energy states analog to the Bohr's atomic model. We have quantized the Hawking temperature and entropy of Schwarzschild black hole from quantization of surface gravity. We also have shown that the change of entropy reduces to zero when the boundary shrinks to very small size.  相似文献   

5.
The constrained instanton method is used to study quantum creation of a BTZ black hole. It is found that the relative creation probability is the exponential of the negative sum of the entropy associated with the outer and inner black hole horizons. The quantum creations of the 4- or higher dimensional versions of the BTZ black hole are also studied.  相似文献   

6.
We consider perturbations of a Schwarzschild black hole that can be of both even and odd parity, keeping terms up to second order in perturbation theory, for the l = 2 axisymmetric case. We develop explicit formulae for the evolution equations and radiated energies and waveforms using the Regge–Wheeler–Zerilli approach. This formulation is useful, for instance, for the treatment in the "close limit approximation" of the collision of counterrotating black holes.  相似文献   

7.
The possibility of stable or quasi-stable Planck mass black hole remnants as solution to the black hole information paradox is commonly believed phenomenologically unacceptable. Since we need a black hole remnant for every possible initial state, the number of remnants is expected to be infinite and that would lead to remnant pair production in any physical process with a total available energy roughly exceeding the Planck mass. In this note I point out that a positive cosmological constant of the Universe would naturally lead to an upper bound on the number of possible remnants.  相似文献   

8.
A quantum black hole has been presented by Kenmoku et al. (1998), and its surface gravity is divergent. We find that its tunneling probability is essentially different from Boltzmann distribution. It is interesting that two peaks appears in the spectrum when the black hole mass decreases close to Planck mass, which is different from black body radiation. PACS: 04.70.Dy  相似文献   

9.
We present a short and direct derivation of Hawking radiation by using the Damour-Ruffini method, as taking into account the self-gravitational interaction from the Kerr-Newman black hole, It is found that the radiation is not exactly thermal, and because the derivation obey conservation laws, the non-thermal Hawking radiation can carry information from the black hole. So it can be used to explain the black hole information paradox, and the process satisfies unitary.  相似文献   

10.
The possibility of stable or quasi-stable Planck mass black hole remnants as solution to the black hole information paradox is commonly believed phenomenologically unacceptable. Since we need a black hole remnant for every possible initial state,the number of remnants is expected to be infinite and that would lead to remnant pair production in any physical process with a total available energy roughly exceeding the Planck mass. In this note I point out that a positive cosmological constant of the Universe would naturally lead to an upper bound on the numberof possible remnants.  相似文献   

11.
The harmonic metric for Schwarzschild black hole with a uniform velocity is presented. In the limit of weak field and low velocity, this metric reduces to the post-Newtonian approximation for one moving point mass. As an application, we derive the dynamics of particle and photon in the weak-field limit for the moving Schwarzschild black hole with an arbitrary velocity. It is found that the relativistic motion of gravitational source can induce an additional centripetal force on the test particle, which may be comparable to or even larger than the conventional Newtonian gravitational force.  相似文献   

12.
白桦  闫沐霖 《中国物理 C》2005,29(12):1136-1141
从't Hooft将黑洞作为高度简并的量子态的理论出发, 考虑黑洞的量子效应, 由于海森堡测不准原理, 导出视界面上的时空坐标是非对易的.利用非对易场论的办法, 研究了大的远离极端情况的Reissner-Nordstrom黑洞,成功的同时推导出黑洞的温度和熵. 而且预言了场的动力学自由度的数目, 该数目支持了最小超对称标准模型.  相似文献   

13.
The Schwarzschild solution has played a fundamental conceptual role in general relativity, and beyond, for instance, regarding event horizons, spacetime singularities and aspects of quantum field theory in curved spacetimes. However, one still encounters the existence of misconceptions and a certain ambiguity inherent in the Schwarzschild solution in the literature. By taking into account the point of view of an observer in the interior of the event horizon, one verifies that new conceptual difficulties arise. In this work, besides providing a very brief pedagogical review, we further analyze the interior Schwarzschild black hole solution. Firstly, by deducing the interior metric by considering time-dependent metric coefficients, the interior region is analyzed without the prejudices inherited from the exterior geometry. We also pay close attention to several respective cosmological interpretations, and briefly address some of the difficulties associated to spacetime singularities. Secondly, we deduce the conserved quantities of null and timelike geodesics, and discuss several particular cases in some detail. Thirdly, we examine the Eddington–Finkelstein and Kruskal coordinates directly from the interior solution. In concluding, it is important to emphasize that the interior structure of realistic black holes has not been satisfactorily determined, and is still open to considerable debate.  相似文献   

14.
An explicit fluid flow simulation of electromagnetic wave propagation in the gravitational field of a Schwarzschild black hole is given. The fluid has a constant refractive index and a spherically symmetric inward directed flow. The resulting form of the metric leads to a new coordinate system in which the Schwarzschild vacuum is written in Gordon's form. It is shown that a closely related coordinate system interpolates between the Kerr-Schild and Painlevé-Gullstrand coordinates.  相似文献   

15.
In the semiclassical treatment, i.e. in a classical black hole geometry, Hawking quanta emerge from trans-Planckian configurations because of scale invariance. There is indeed no scale to stop the blueshift effect encountered in the backward propagation toward the event horizon. On the contrary, when taking into account the gravitational interactions neglected in the semiclassical treatment, a new UV scale could be dynamically engendered and could stop the focusing. To show that this is the case, we use the large-N limit, where N is the number of matter fields. In this limit, the semiclassical treatment is the leading contribution. Nonlinear gravitational effects appear in the next orders and in the first of these, the effects are governed by the two-point correlation function of the energy–momentum tensor evaluated in the vacuum. In this case they can also be obtained by considering light propagation in a stochastic ensemble of metrics whose mean fluctuating properties are determined by this two-point function.  相似文献   

16.
The Quantum Entropy in Horowitz-Strominger Black Hole Background   总被引:3,自引:0,他引:3  
Using 't Hooft's brick wall model and Newman-Penrose's spinor analysis, the expression of the quantum entropy is derived in the Horowitz-Strominger black hole background. The calculations show us that the Fermionic entropy is 7/2 times the Bosonic entropy.  相似文献   

17.
We study the absorption probability and Hawking radiation of the scalar field in a d-dimensional black hole with quantum correction arising from the polymer quantization. We find that the quantum length scale k (i.e., the bounce radius) modifies the standard results in greybody factors and Hawking radiation on the brane and into the bulk. For the black hole with the larger mass M the effects of the parameter k in the four-dimensional black hole spacetime are entirely different from those in the high dimensional cases. When the mass of black hole M becomes very small, we also find that only the sign of the change rate of the greybody factors on the brane with respect to the dimensional number depends sharply on the bounce radius k. These information can help us know more about the extra dimension and the black holes with quantum correction.  相似文献   

18.
The quasinormal modes of the Schwarzschild black hole surrounded by the quintessence in Rastall gravity are studied using the sixth-order Wentzel-Kramers-Brillouin approximative approach. The effect of the Rastall parameter on the quasinormal modes of gravitational, electromagnetic and massless scalar perturbations is explored. Compared to the case of Einstein gravity, it is found that, when η < 0, the gravitational field, electromagnetic field as well as massless scalar field damp more rapidly and have larger real frequency of oscillation in Rastall gravity, while when η > 0, the gravitational field, electromagnetic field as well as massless scalar field damp more slowly and have smaller real frequency of oscillation in Rastall gravity. It is also found that the gravitational field, electromagnetic field as well as massless scalar field damp more and more slowly and the real frequency of oscillation for the gravitational perturbation, electromagnetic perturbation as well as massless scalar perturbation becomes smaller and smaller as the Rastall parameter η increases. Compared among the quasinormal frequencies of gravitational, electromagnetic and massless scalar perturbations, I find that, for fixed η, (l, n), ∈ and Nq, the oscillation damps most slowly for the gravitational perturbation, mediate for the electromagnetic perturbation and most rapidly for the massless scalar perturbation, and the real frequency of oscillation is the smallest for the gravitational perturbation, mediate for the electromagnetic perturbation and the largest for the massless scalar perturbation in Rastall gravity.  相似文献   

19.
By considering the dual Liouville theory emerging in the near-horizon limit, we study the thermodynamics of general rotating black hole with four charges in four dimensions. Both the black hole entropy and temperature are found to agree with the gravitational expectations. The relations between the new Liouville formalism and the anomaly approach are also discussed.  相似文献   

20.
Quantum Statistic Entropy of Three-Dimensional BTZ Black Hole   总被引:1,自引:0,他引:1  
Using the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity, we investigate entropy of a black line on the background of the three-dimensional BTZ. In our calculation, we need not introduce cutoff and can remove the divergent term in the original brick-wall method via the new equation of state density. And it is obtained that the entropy of the black line is proportional to the area of the horizon (perimeter). Further it is shown the entropy of black line is the entropy of quantum state on the surface of horizon (perimeter). The black line entropy is the intrinsic property of the black hole. The entropy is a quantum effect. By using quantum statistical method, we directly obtain the partition function of Bose field and fermi field on the background of the black line. The difficulty to solve wave equation of various particles is avoided. We offer a new simple and direct way for calculating the entropy of various spacetime black holes (black plane, black line and black column). PACS 04.20.Dw; 97.60.Lf  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号