首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inversion potentials of R2CO (R=H, F, Cl) molecules in the lowest excited electronic states were determined from experimental data using various model potential functions and approximations for the kinetic energy operator of inversion motion. The estimates of the heights of the barriers to inversion and the equilibrium values of the inversion coordinate for the H2CO molecule in the S1 and T1 states are fairly stable. The results for the F2CO and Cl2CO molecules are strongly dependent on the approximation used; for these molecules, the most reliable parameters of the potential functions were chosen. The problem of qualitative characteristics of the shape of inversion potentials is discussed using the results ofab initio quantum-chemical calculations of the molecules under study. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 645–651, April, 1999.  相似文献   

2.
Geometrical parameters of tetraatomic carbonyl molecules X2CO and XYCO (X, Y = H, F, Cl) in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states as well as values of barriers to inversion in S1 and T1 states and S1S0 and T1S0 adiabatic transition energies were systematically investigated by means of various quantum‐chemical techniques. The following methods were tested: HF, MP2, CIS, CISD, CCSD, EOM‐CCSD, CCSD(T), CR‐EOM‐CCSD(T), CASSCF, MR‐MP2, CASPT2, CASPT3, NEVPT2, MR‐CISD, and MR‐AQCC within cc‐pVTZ and cc‐pVQZ basis sets. The accuracy of quantum‐chemical methods was estimated in comparison with experimental data and rather accurate structures of excited electronic states were obtained. MP2 and CASPT2 methods appeared to be the most efficient and CCSD(T), CR‐EOM‐CCSD(T), and MR‐AQCC the most accurate. It was found that at equilibrium all the molecules under study are nonplanar in S1 and T1 electronic states with CO out‐of‐plane angle ranging from 34° (H2CO, S1) to 52° (F2CO, T1), and height of barrier to inversion varying from 300 (H2CO, S1) to 11,000 (F2CO, T1) cm?1. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

3.
Ab initio quantum-chemical calculations of equilibrium geometric parameters, vibrational frequencies, and potentials of internal rotation for CCIF2NO and CCl2FNO molecules in the ground (S0) and lowest excited singlet (S1) electronic states were performed. The results of calculations were compared with experimental data. A new interpretation of experimental spectra of the CCIF2NO molecule was suggested. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1453–1458, August, 1999.  相似文献   

4.
The structures of isotopomers of conformationally flexible acetyl chloride molecule, CH3COCl and CD3COCl, in the ground (S0 and lowest excited singlet (S1) and triplet (T1) electronic states were calculated by the RHF, MP2, and CASSCF methods. The equilibrium geometric parameters and harmonic vibrational frequencies of the molecules in these electronic states were estimated. According to calculations, electronic excitation causes considerable conformational changes involving rotation of the CH3 (CD3) top and a substantial deviation of the CCOCl fragment from planarity. The results of calculations agree with experimental data. Two dimensional torsional inversion sections of the potential energy surface were calculated and analyzed. Vibrational problems for large amplitude vibrations (torsional vibration in the S0 state and both torsional and inversion vibrations in the T1 and S1 states) were solved in one- and two-dimensional approximations.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 62–70, January, 2005.  相似文献   

5.
The molecular structure of 2,2-difluoroethanal (DFE) in the ground (S0) and lowest excited triplet (Ti) electronic states was investigated byab initio quantum-chemical methods. In the S0 state, the DFE molecule exists as the only stablecis conformer. The Ti↓S0 electronic excitation is accompanied by the rotation of the top and the deviation of the carbonyl fragment from planarity. For the DFE molecule in the Ti state, six minima corresponding to three pairs of enantiomers were found on the potential energy surface. Based on this potential energy surface, the problems on torsion and inversion nuclear motions were solved in the one- and two-dimensional approximations, and the interaction between these motions was revealed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 989–995, June, 2000.  相似文献   

6.
Summary Calculations were done on ground and excited states of C2, C 2 + , C 2 , N2, N 2 + , O2, O 2 + , O 2 , CO, CO+, CO2+, and CO using contracted well-tempered basis sets. The (14s 10p) basis sets were augmented with threed, one or twof, and oneg functions. Total energies, orbital energies, and spectroscopic constants were compared with the best available computational data.  相似文献   

7.
The potential energy surfaces of the nitroso compounds CClF2NO and CCl2FNO in the ground and lowest excited singlet and triplet electronic states were studied by various ab initio methods (including multiconfigurational methods). The equilibrium geometric parameters, vibrational frequencies, internal rotation potential functions, and rotational contours of bands in the S1 S0 vibronic spectrum of the CClF2NO molecule were calculated. For the molecules under consideration, the quantum-mechanical problem on torsional motion was solved. The results of calculations are, on the whole, in good agreement with experiment.  相似文献   

8.
Summary The dipole and quadrupole moments and the dipole polarizability tensor components are calculated for the1 B 1 and3 B 1 excited states of the water molecule by using the complete active space (CAS) SCF method and an extended basis set of atomic natural orbitals. The dipole moment in the lowest1 B 1 (0.640 a.u.) and3 B 1 (0.416 a.u.) states is found to be antiparallel to that in the ground electronic state of H2O. The shape of the quadrupole moment ellipsoid is significantly modified by the electronic excitation to both states investigated in this paper. All components of the excited state dipole polarizability tensor increase by about an order of magnitude compared to their values in the ground electronic state. The present results are used to discuss some aspects of intermolecular interactions involving molecules in their excited electronic states.  相似文献   

9.
The structure of the conformationally flexible 2-fluoroethanal molecule (CH2FCHO, FE) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was investigated by ab initio quantum-chemical methods. The FE molecule in the S0 state was found to exist as two conformers, viz., as cis (the F—C—C—O angle is 0°) and trans (the F—C—C—O angle is 180°) conformers. On going both to the T1 and S1 states, the FE molecule undergoes substantial structural changes, in particular, the CH2F top is rotated with respect to the core and the carbonyl CCHO fragment becomes nonplanar. The potential energy surfaces for the T1 and S1 states are qualitatively similar, viz., six minima in each of the excited states of FE correspond to three pairs of mirror-symmetrical conformers. Based on the potential energy surfaces calculated for the FE molecule in the T1 and S1 states, the one-dimensional problems on the torsion and inversion nuclear motions as well as the two-dimensional torsion-inversion problems were solved.  相似文献   

10.
The structural stabilities and electronic properties of C12Si8X8 where X = H, F, and Cl are probed on the basis of density functional theory at the B3LYP/6-311++G**//B3LYP/6-31+G* level. Vibrational frequency calculations show that all the systems are true minima. The infrared spectra of the most stable C12Si8X8 molecules are simulated to assist further experimental characterization. The functionalized structures and energy gaps between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, have been systematically investigated. It seems that C12Si8H8 has more stability against electronic excitations via increasing the HOMO–LUMO gap comparing with C12Si8Cl8 and C12Si8F8. High charge transfer on the surfaces of our stable compounds, provokes further investigations on their possible application for hydrogen storage. The addition reaction energies of C12Si8X8 are high exothermic, and C12Si8F8 is more thermodynamically accessible.  相似文献   

11.
Isomer separation of mixtures, which were prepared by chlorination followed by transformations of dodecamethylcyclohexasilane (Me2Si)6 into bifunctional decamethylcyclohexasilanes X2Si6Me10 (X = Cl, H, or OH), was carried out. As a result, mixtures of the corresponding 1,3- and 1,4-derivatives were separated to obtain structural isomers, and stereoisomers, viz., cis- and trans-1,4-dihydrocyclohexasilanes, were isolated in individual form. The molecular and crystal structures of the resulting bifunctional decamethylcyclohexanes X2Si6Me10 (X = H or OH) and decamethyl-7-oxahexasilanorbornane were established by X-ray diffraction analysis. Bifunctional cyclohexasilanes form a mesophase as a plastic crystal. The temperature range of its existence was determined. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1566–1575, July, 2005.  相似文献   

12.
Halogen and solvent effects on the conformational, vibrational, and electronic characteristics of thiophene-2-carbaldehyde (T2C, C5H4OS) and thiophene-2-carbonyl-halogens [C5H3XOS, X = F (T2C-F), Cl (T2C-Cl), and Br (T2C-Br)] are analyzed by the density functional theory (DFT) and time dependent density functional theory (TDDFT), using the B3LYP functional and the 6-31++G(d,p) basis set. Computations consider two conformations of the compounds in both gas phase and solution. The present study aims at the exploration of the halogen and medium effects on the stability, structural parameters, dipole moment, carbonyl stretching vibration, frontier molecular orbitals, ultraviolet (UV) and density-of-states spectra of the conformers. The atypical characteristics of fluorine and chlorine affecting the electrical-optical band gaps, chemical hardness, partial density-of-states plot, absorption band, and the highest occupied molecular orbital are observed correspondingly. The findings of this research will provide insight for future studies considering conformations analogous to the compounds studied.  相似文献   

13.
14.
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3 and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2 with B(CH3)3 and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.  相似文献   

15.
The B3LYP method of DFT and HF theories of ab initio with 6-311+G** basis sets were used to predict the geometries of the cytosine-BX3 (X,=F, Cl) complex systems. Four conformers were obtained with no imaginary frequencies, respectively. The binding energies, enthalpies and Gibbs energies of cytosine-BX3 have been obtained. The analyses of the combinations between cytosine and BX3 using the natural bond orbital (NBO) method and thermodynamics indicate that the complexes (a) and (e), which depend on the proton affinities of the oxygen on the cytosine and boron in BX3, are the most stable ones with their combination energies of −234.21 and −228.23 kJ.mol−1 (B3LYP method, BSSE corrected). Based on the calculation results, a reasonable method was employed to calculate the change in the enthalpies and Gibbs energies to form eight complexes in the gaseous state at 298.15K and 101.325 kPa. It can be shown that the conformers (a) and (e) are the most stable and form readily.  相似文献   

16.
The ground and lower-lying excited electronic states of FeX2 and NiX2 (X=F, Cl, Br, I) molecules are systematically investigated by ab initio method at the complete active space self-consistent field (CASSCF) and multiconfigurational quasi-degenerate second-order perturbation (MCQDPT2) levels of theory. It is concluded that the dynamic electron correlation has to be taken into account in the prediction of the properties for such kind of molecules. The equilibrium bond lengths re(M–X), force constants and harmonic vibrational frequencies are calculated for the ground and lower-lying excited electronic states. The spin-orbit coupling (SOC) effects are analysed.  相似文献   

17.
The electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts have been calculated with and without Bi 5d states using the experimental lattice parameters, via the plane-wave pseudopotential method based on density functional theory (DFT). BiOF exhibits a direct band gap of 3.22 or 3.12 eV corresponding to the adoption of Bi 5d states or not. The indirect band gaps of BiOCl, BiOBr, and BiOI are 2.80, 2.36, and 1.75 eV, respectively, if calculated with Bi 5d states, whereas the absence of Bi 5d states reduces them to 2.59, 2.13, and 1.53 eV successively. The calculated gap characteristics and the falling trend of gap width with the increasing X atomic number agree with the experimental results, despite the common DFT underestimation of gap values. The shapes of valence-band tops and conduction-band bottoms are almost independent of the involvement of Bi 5d states. The indirect characteristic becomes more remarkable, and the conduction-band bottom flattens in the sequence of BiOCl, BiOBr, and BiOI. Both O 2p and X np (n = 2, 3, 4, and 5 for X = F, Cl, Br, and I, respectively) states dominate the valence bands, whereas Bi 6p states contribute the most to the conduction bands. With the growing X atomic number, the localized X np states shift closer toward the valence-band tops, and the valence and conduction bandwidths evolve in opposite trends. Atomic and bond populations have also been explored to elucidate the atomic interactions, along with the spatial distribution of orbital density.  相似文献   

18.
We report about quantum chemical ab initio calculations at the MP2/6‐311+G(2d)//MP2/6‐31G(d) level and DFT calculations at BP86/TZP of the geometries and bond dissociation energies of the borane‐phosphane complexes X3B‐PY3 and the alane‐phosphane complexes X3Al‐PY3 (X = H, F, Cl; Y = F, Cl, Me, CN). The nature of the B‐P and Al‐P bonds is analyzed with a bond energy partitioning method. The calculated bond dissociation energies De of the borane adducts X3B‐PY3 show for the phosphane ligands the trend PMe3 > PCl3 ∼ PF3 > P(CN)3. A similar trend PMe3 > PCl3 > PF3 > P(CN)3 is predicted for the alane complexes X3Al‐PY3. The order of the Lewis acid strength of the boranes depends on the phosphane Lewis base. The boranes show with PMe3 and PCl3 the trend BH3 > BCl3 > BF3 but with PF3 and P(CN)3 the order is BH3 > BF3 > BCl3. The bond energies of the alane complexes show always the trend AlCl3 ≥ AlF3 > AlH3. The bonding analysis shows that it is generally not possible to correlate the trend of the bond energies with one single factor which determines the bond strength. The preparation energy which is necessary to deform the Lewis acid and Lewis base from the equilibrium form to the geometry in the complex may have a strong influence on the bond energies. The intrinsic interaction energies may have a different order than the bond dissociation energies. The trend of the interaction energies are sometimes determined by a single factor (Pauli repulsion, electrostatic attraction or covalent bonding) but sometimes all components are important. The higher Lewis acid strength of BCl3 compared with BF3 in strongly bonded complexes is not caused by the deformation energy of the fragments but it is rather caused by the intrinsic interaction energy. P(CN)3 is a weaker Lewis base than PF3, PCl3 and PMe3 mainly because of its weaker electrostatic attraction. The complex H3B‐P(CN)3 is predicted to have a bond dissociation energy Do = 14.8 kcal/mol which should be sufficient to synthesize the compound as the first adduct with the ligand P(CN)3. The calculated bond energies at the BP86 level are in most cases very similar to the MP2 results. In a few cases significantly different absolute values have been found which are caused by the method and not by the quality of the basis set.  相似文献   

19.
The standard enthalpies, entropies, and Gibbs free energies of separate stages of the multistep hydrolysis of MX4 molecules (M = C, Si, Ge; X = H, F, Cl) in the gas phase at 298 K were calculated by the G3 high-precision quantum-chemical method of calculation of thermodynamic parameters. The trends in these parameters were analyzed for each group of molecules. The calculated thermodynamic parameters make it possible to estimate the theoretical limits for the contents of water and hydrolysis products in the above high-purity carbon, silicon, and germanium derivatives.  相似文献   

20.
Quantum chemical calculations of compounds with a pentacoordinated nitrogen atom such as NF2H3 (in the CCSD(Full)/6-311++G(d,p) approximation), NF2Cl3 and NF2Br3 (in the B3LYP/6-311+G(d) approximation) are carried out. It is found that NF2Cl3 and NF2Br3 molecules are structurally stable, but thermodynamically unstable, and are isomerized to NFCl2...FCl and NFBr2...FBr molecular complexes respectively. The total energy of NFCl2...FCl and NFBr2...FBr complexes is lower than the total energy of NF2Cl3 and NF2Br3 molecules by 62 kcal/mol and 64 kcal/mol respectively. The trigonal bipyramidal form of the NF2H3 molecule of D 3h symmetry is structurally unstable: a first-order saddle point corresponds to it on the potential energy surface of the system. A second-order saddle point is found on the reaction path of NF2H3 isomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号