首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
 Considerations for applying LDA to bubbly flows with bubbles about 3 to 4 mm in diameter were investigated by means of detailed experiments in the model geometry of a train of bubbles. Both forward scatter and backscatter LDA were studied. The validity of phase discrimination via burst amplitude was tested and special attention was paid to the impact of bubble interface response to the laser beams. Forward and backscatter measurements can be compared well. In both configurations, predominantly the liquid phase is “seen” by LDA. A bubble itself only leads to a velocity realization in special conditions. In those cases the Doppler shift is determined by the motion of the bubble interface which consists of the motion of the center of gravity of the bubble as well as shape oscillations. In backscatter bubbles only give velocity realizations when their “cheeks” pass through the measuring volume virtually perpendicularly. It is shown that the bubble-caused velocity realization frequency is very low for bubbles of the size used. Phase discrimination on burst amplitude does not hold. In ambient cases such as bubble columns one can assume that only the liquid phase is being studied. Received: 4 May 1998/Accepted: 30 September 1998  相似文献   

2.
Equilibrium conditions of a single-component two-phase-system having a plane or a concave interface interacting with a solid wall are the major focus of the paper. The concave interface is termed “closed”, if it forms a vapour bubble, and “opened”, in the case of a common liquid meniscus. The equations derived describe the equilibrium temperature in dependence of the wall distance and the interfacial curvature. They show that an attraction between the vapour-liquid interface and the wall rises the equilibrium temperature. At comparable conditions, the equilibrium temperature is higher for the closed than for the opened interface. Received on 18 December 1997  相似文献   

3.
油--气润滑过程中润滑油液滴受高速气流扰动易形成含气泡油滴,微气泡将对油滴撞击壁面时的运动过程以及壁面油膜 层的形成质量产生重要影响. 基于耦合的水平集--体积分数 方法,对含气泡油滴撞击油膜壁面行为进行数值模拟研究, 考察含气泡油滴撞击油膜壁面时气泡的变形运动过程,探讨气泡破裂的动力学机制,分析气泡大小、碰撞速度和液体黏度等因素对含气 泡油滴撞壁过程中气泡变形特征参数的影响规律. 研究表明:含气泡油滴撞击油膜壁面后气泡会发生变形,并破裂形成膜液滴;气泡随同 液滴运动过程中,气泡内外压力和速度梯度变化是使气泡发生破裂的主要诱因. 气泡大小对气泡破裂方式影响较大,气泡较小时发生单 点破裂,而气泡较大时更容易发生多处破裂. 不同大小气泡受力差异较大,气泡大小与破裂发生时刻没有明显相关性. 碰撞速度和液体 黏度对气泡的变形、破裂和破裂发生时刻都具有一定的影响. 碰撞速度越大,油滴动能越大,更容易产生气泡变形和破裂现象. 液体黏 度增大,在油滴撞壁运动前期促进气泡变形,而在运动后期可以阻延气泡破裂行为发生.   相似文献   

4.
油-气润滑系统工作过程中,润滑油膜受微油滴冲击和压缩空气扰动影响易形成气泡夹带现象,气泡夹带行为将对壁面润滑油膜层的形成及流动过程产生重要影响。基于VOF数值模拟方法,对含气泡油膜沿倾斜壁面的流动行为进行研究,考察了气泡的存在对油膜形态和流动速度的影响规律,以及气泡破裂阶段空腔邻域内流体压力变化特性。研究表明,油膜夹带气泡的形变和迁移诱发气泡周围微流场的速度扰动现象,导致气液界面处产生非均匀速度梯度分布,进而引发油膜表面的形态波动。气泡发生破裂时,油膜空穴部位发生明显的正负压力波动现象,气泡附近壁面将承受一定的交变载荷作用。  相似文献   

5.
The problem of thermal growth of a vapor bubble moving in a superheated liquid is solved for two models of the phase interface, namely: a rigid (no-slip condition) and a pliable (slip condition) spherical surface. The second self-similar solution of the problem of the motion of a vapor bubble with a pliable surface is found. On the basis of this solution, an approximate dependence of the nondimensional heat flux into the bubble on the Jacob and Péclet numbers is constructed. For two limiting cases, namely, for a bubble growing at rest and a moving bubble of constant radius, this dependence coincides with the known solutions. The calculation results are compared with the experimental data obtained for vapor bubbles rising in a superheated liquid.  相似文献   

6.
 Interfacial mass transfer mechanisms played an essential role to the high heat transfer efficiency noted for nucleate boiling. There existed a zone around the bubble surface that exhibited zero net mass flux, termed herein as the “zero-flux zone”. This work investigated analytically the interfacial vaporization and condensation processes around a boiling bubble, based on which the positional dependence of zero-flux zone was derived. For a stationary bubble the zero-flux zone shifted to the upper hemisphere with decreasing wall superheat and/or with increasing contact angle. Moreover, the bubble growth (shrinkage) largely enhanced (retarded) such a trend. At the extreme condition where the bubble grew at a very fast speed the entire bubble surface would be subject to liquid evaporation only. Experiments observed a “thermal jet” emerging from the bubble cap, which was attributed to the interfacial vapor condensation flux at the bubble cap. Received on 11 December 2000 / Published online: 29 November 2001  相似文献   

7.
The motion of bubbles in liquids has been studied in many earlier papers [1–8]. In this paper methods of the projection type are applied to the problem of a cavity in an ideal, incompressible liquid in the absence of vortices. The collapse of a bubble having a finite initial velocity in a boundless liquid is considered; also considered is the collapse of a stationary bubble close to a solid wall. Using the small-parameter method the generation of a jet is examined analytically. A numerical computing method not involving small parameters is developed; it is based on calculating the projection by numerical computation of the corresponding integrals. The method combines economy and simplicity of application with a high accuracy in the region in which the representation of the velocity potential by a series of spherical functions remains effective.  相似文献   

8.
The dynamics of a “collective” gas bubble in the magma melt during its decompression was numerically studied on the basis of a complete mathematical models of an explosive volcanic eruption. It is shown that the bubble size distribution obtained for the nucleation process has one peak, which allows considering a “collective” bubble. The main stages of bubble growth due to gas diffusion and changes in the viscosity of the medium are determined. It is shown that the high viscosity of the melt makes possible the transition from the Rayleigh equation to a simpler relation for the radial velocity of the bubble.  相似文献   

9.
Seed bubbles are generated on microheaters located at the microchannel upstream and driven by a pulse voltage signal, to improve flow and heat transfer performance in microchannels. The present study investigates how seed bubbles stabilize flow and heat transfer in micro-boiling systems. For the forced convection flow, when heat flux at the wall surface is continuously increased, flow instability is self-sustained in microchannels with large oscillation amplitudes and long periods. Introduction of seed bubbles in time sequence improves flow and heat transfer performance significantly. Low frequency (∼10 Hz) seed bubbles not only decrease oscillation amplitudes of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures, but also shorten oscillation cycle periods. High frequency (∼100 Hz or high) seed bubbles completely suppress the flow instability and the heat transfer system displays stable parameters of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures. Flow visualizations show that a quasi-stable boundary interface from spheric bubble to elongated bubble is maintained in a very narrow distance range at any time. The seed bubble technique almost does not increase the pressure drop across microsystems, which is thoroughly different from those reported in the literature. The higher the seed bubble frequency, the more decreased heating surface temperatures are. A saturation seed bubble frequency of 1000–2000 Hz can be reached, at which heat transfer enhancement attains the maximum degree, inferring a complete thermal equilibrium of vapor and liquid phases in microchannels. Benefits of the seed bubble technique are the stabilization of flow and heat transfer, decreasing heating surface temperatures and improving temperature uniformity of the heating surface.  相似文献   

10.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

11.
 The objective of this research was to study the effect of various Lagrange-tracking correlation methods in estimating the eddy lifetime for a two-stream, turbulent, planar free shear layer. Zeroth-, first- and second-order Lagrange correlation methods were applied to the time-evolving velocity field data collected from a cinematic particle image velocimetry technique. A time scale associated with the eddy lifetime was obtained based on a 2/e correlation of either vorticity or streamwise velocity fluctuations. When based on vorticity, this time scale significantly increased as expected when the tracking was computed with a second-order Lagrangian tracking technique as compared to a (zeroth-order) Taylor hypothesis approach. However when based on streamwise velocity fluctuations, this time scale did not increase significantly for the higher order projection methods. The latter result is attributed to occurrences of “reverse correlation” of the instantaneous streamwise velocity fluctuations caused by eddy rotation. Received: 2 April 1997/Accepted: 3 September 1997  相似文献   

12.
张洋  陈科  尤云祥  任伟 《力学学报》2017,49(5):1050-1058
基于流体体积法(volume of fluid,VOF),数值模拟了装满黏性液体的圆柱形汽缸中的裙带气泡的浮升运动,研究了侧壁面约束对裙带气泡浮升动力学的影响.用雷诺数(Re)、韦伯数(We)、长宽比(χ)、裙带厚度(T/d)和裙带长度(L/d)等参数来表征不同约束比条件下(1.1≤Cr≤10)裙带气泡的运动和变形特性,分别在全局参考系和局部参考系下分析了壁面对气泡内外流场的影响.模拟结果显示,当Cr≥8时,裙带气泡的行为特性与在无界流域条件下的情况相当,可视作壁面无关的.当Cr8时,壁面对裙带气泡的浮升速度和形状演化有显著影响.随着壁面的靠近,裙带气泡受到的阻力增大,造成浮升速度下降.约束比降低使裙带厚度增厚而长度变短直至裙带消失,裙带气泡受挤压而被拉长并逐渐变为椭圆球帽形最后到子弹形.相反,约束比增大时,裙带气泡尾流效应增强,气泡边缘处流场产生明显的循环流动(涡环),促使裙带的形成.研究表明壁面会加剧裙带气泡产生破碎,印证了前人的推断.模拟结果与已有的经验公式吻合良好,分析了前人公式的适用性.  相似文献   

13.
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces. The project supported by the National Natural Science Foundation of China (Grant No.19672070)  相似文献   

14.
A new experimental facility based on Laser Doppler anemometry permits accurate local measurements in a horizontal pipe. Measurements of the axial velocity component in the liquid layer of the atomization/stratified flow regime are reported. The new information includes time-averaged local velocities, RMS values, probability density distributions, and power spectra. Elimination of velocity bias and calculation of velocity spectra is accomplished by a recently developed “signal reconstruction” algorithm. The data suggest that only in the vicinity of the solid surface (sublayer) does the liquid motion resemble the well-known behavior of single phase flow. Beyond that, the flow field is strongly influenced by the wavy gas/liquid interface and by the apparently intensive energy transfer from the very fast moving gas to the liquid layer.  相似文献   

15.
Turbulent flow over a sinusoidal solid wavy surface was investigated by a direct numerical simulation using a spectral element technique. The train of waves has an amplitude to wavelength ratio of 0.05. For the flow conditions (Re=hU b/2ν= 3460) considered, adverse pressure gradients were large enough to cause flow separation. Numerical results compare favorably with those of Hudson's (1993) measurements. Instantaneous flow fields show a large variation of the flow pattern in the spanwise direction in the separated bubble at a given time. A surprising result is the discovery of occasional velocity bursts which originate in the separated region and extend over large distances away from the wavy wall. Turbulence in this region is very different from that near a flat wall in that it is associated with a shear layer which is formed by flow separation. Received 17 April 1996 and accepted 19 November 1997  相似文献   

16.
The effects of co-current flows on a rising Taylor bubble are systematically investigated by a front tracking method coupled with a finite difference scheme based on a projection approach. Both the upward (the co-current flows the same direction as the buoyancy force) and the downward (the co-current moves in the opposite direction of the buoyancy force) co-currents are examined. It is found that the upward co-current tends to elongate the bubble, while the downward co-current makes the bubble fatter and shorter. For large Nf (the inverse viscosity number), the upward co-current also elongates the skirted tail and makes the tail oscillate, while the downward co-current shortens the tail and even changes a dimpled bottom to a round shape. The upward co-current promotes the separation at the tail, while the downward co-current suppresses the separation. The terminal velocity of the Taylor bubble rising in a moving flow is a linear combination of the mean velocity (UC) of the co-current and the terminal velocity (U0) of the bubble rising in the stagnant liquid, and the constant is around 2 which agrees with the literature. The wake length is linearly proportional to the velocity ratio (UC/U0). The co-currents affect the distribution of the wall shear stresses near the bubble, but not the maximum.  相似文献   

17.
Specific features of the dynamics of the wave field structure and growth of a “collective” bubble behind the decompression wave front in the “Lagrangian” section of the formed cavitation zone are numerically analyzed. Two cases are considered: with no diffusion of the dissolved gas from the melt to cavitation nuclei and with the diffusion flux providing an increase in the gas mass in the bubbles. In the first case, it is shown that an almost smooth decompression wave front approximately 100 m wide is formed, with minor perturbations that appear when the front of saturation of the cavitation zone with nuclei is passed. In the case of the diffusion process, the melt state behind the saturation front is principally different: jumps in mass velocity and viscosity are observed in the vicinity of the free surface, and the pressure in the “collective” cavitation bubble remains unchanged for a sufficiently long time interval, despite the bubble growth and intense diffusion of the gas from the melt. It is assumed that the diffusion process (and, therefore, viscosity) actually become factors determining the dynamics of growth of cavitation bubbles beginning from this time interval. A pressure jump is demonstrated to form near the free surface.  相似文献   

18.
In the framework of the foam process modelling, this paper presents a numerical strategy for the direct 3D simulation of the expansion of gas bubbles into a molten polymer. This expansion is due to a gas overpressure. The polymer is assumed to be incompressible and to behave as a pseudo‐plastic fluid. Each bubble is governed by a simple ideal gas law. The velocity and the pressure fields, defined in the liquid by a Stokes system, are subsequently extended to each bubble in a way of not perturbing the interface velocity. Hence, a global velocity–pressure‐mixed system is solved over the whole computational domain, thanks to a discretization based on an unstructured first‐order finite element. Since dealing with an Eulerian approach, an interface capturing method is used to follow the bubble evolution. For each bubble, a pure advection equation is solved by using a space–time discontinuous‐Galerkin method, coupled with an r‐adaptation technique. Finally, the numerical strategy is achieved by considering a global mesh expansion motion, which conserves the amount of liquid into the computational domain during the expansion. The expansion of one bubble is firstly considered, and the simulations are compared with an analytical model. The formation of a cellular structure is then investigated by considering the expansion of 64 bubbles in 2D and the expansion of 400 bubbles in 3D. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
《力学学报》2009,41(1):8
根据考虑了液体可压缩性的改进的微气泡动力学方程,采用改进的初始半径对单泡超声空化现象进行了数值计算研究. 结果表明,微气泡振动对一些参量很敏感:微气泡振动半径与初始半径的比值随振动频率的增大而减小;提高声场声压会加剧气泡崩塌程度,但过高的声压又不能使微气泡崩塌;微气泡崩塌速率随气泡初始半径的增加而增大,在一定范围内能保证空化泡稳定振动,在初始半径为1.6\,$\mu$m 处空化程度最强,如果继续增大初始半径则空化程度减弱、甚至消失;微气泡崩塌程度随黏滞系数和表面张力的增大而减弱,过大的黏滞系数和表面张力会使微气泡崩塌难以发生. 计算结果与他人的实验数据相比,发现液体的可压缩性使单泡空化强度增强, 对最佳空化区域范围的确定有较大的影响.  相似文献   

20.
An equation is proposed for the pulsation of a single cavity in an abnormally compressible bubbly liquid which is in pressure equilibrium and whose state is described by the Lyakhov equation. In the equilibrium case, this equation is significantly simplified. Numerical analysis is performed of the bubble dynamics and acoustic losses (the profile and amplitude of the radiation wave generated on the bubble wall from the side of the liquid). It is shown that as the volumetric gas concentration k0 in the equilibrium bubbly medium increases, the degree of compression of the cavity by stationary shock wave decreases and its pulsations decrease considerably and disappear already at k0 = 3%. In the compression process, the cavity asymptotically reaches an equilibrium state that does not depend on the value of k0 and is determined only by the shock-wave amplitude. The radiation wave takes the shape of a soliton whose amplitude is much smaller and whose width is considerably greater than the corresponding parameters in a single-phase liquid. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 51–57, May–June, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号