首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acceleration of liquid chromatography/mass spectrometric (LC/MS) analysis for metabolite identification critically relies on effective data processing since the rate of data acquisition is much faster than the rate of data mining. The rapid and accurate identification of metabolite peaks from complex LC/MS data is a key component to speeding up the process. Current approaches routinely use selected ion chromatograms that can suffer severely from matrix effects. This paper describes a new method to automatically extract and filter metabolite-related information from LC/MS data obtained at unit mass resolution in the presence of complex biological matrices. This approach is illustrated by LC/MS analysis of the metabolites of verapamil from a rat microsome incubation spiked with biological matrix (bile). MS data were acquired in profile mode on a unit mass resolution triple-quadrupole instrument, externally calibrated using a unique procedure that corrects for both mass axis and mass spectral peak shape to facilitate metabolite identification with high mass accuracy. Through the double-filtering effects of accurate mass and isotope profile, conventional extracted ion chromatograms corresponding to the parent drug (verapamil at m/z 455), demethylated verapamil (m/z 441), and dealkylated verapamil (m/z 291), that contained substantial false-positive peaks, were simplified into chromatograms that are substantially free from matrix interferences. These filtered chromatograms approach what would have been obtained by using a radioactivity detector to detect radio-labeled metabolites of interest.  相似文献   

2.
We report an evaluation of a modern Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) instrument to determine the general trend of post-excitation radius on total ion abundance, mass measurement accuracy, and isotopic distributions for internally calibrated mass spectra. The optimum post-excitation radius was determined using total ion abundance, mass measurement accuracy (MMA), and isotope ratios. However, despite the utility of internal calibration for achieving ultimate MMA, the internal calibrant ions were insufficient for compensating for sub-optimum ICR cell conditions. The findings presented herein underscore the importance of determining the optimal post-excitation radius in FT-ICR-MS to achieve high ion abundance (low limits of detection), high MMA, and valid isotopic distributions.  相似文献   

3.
In addition to mass accuracy, the ability of a mass spectrometer to faithfully measure the isotopic distribution of an ion, defined as spectral accuracy, is also important. Although time-of-flight mass spectrometers are reported to possess high spectral accuracy capability compared with other mass spectrometers, the Orbitrap has not yet been investigated. Ten natural products (moxidectin, erythromycin, digoxin, rifampicin, amphotericin B, rapamycin, gramicidin S, cyclosporin A, vancomycin, and thiostrepton) ranging in molecular weight from 639 to 1663 Da were measured on an LTQ/Orbitrap mass spectrometer with resolving power settings of 7.5, 15, 30, 60, and 100 K. The difference in the observed profile isotope pattern compared with the theoretical calculation after peak shape calibration, denoted spectral error, was calculated using the program MassWorks (Cerno Bioscience, Danbury, CT, USA). Spectral errors were least at 7.5 K resolving power (≤3%) but exceeded 10% for some compounds at 100 K. The increasing spectral error observed at higher resolving power for compounds with complex fine structure might be explained by the phenomena of isotopic beat patterns as observed in FTICR. Several compounds with prominent doubly charged ions allowed comparison of spectral accuracies of singly-versus doubly-charged ions. When using spectral error to rank elemental compositions with formula constraints (C0–100H0–200N0–50O0–50Cl0–5S0–5) and a mass tolerance ≤2 parts-per-million, the correct formula was ranked first 35% of the time. However, spectral error considerations eliminated >99% of possible elemental formulas for compounds with molecular weight >900 Da.  相似文献   

4.
利用MassWorks软件对GC/MS采集的目标农药谱图经过校正后,实现了在单位分辨率质谱上测定6种农药化合物的精确质量数,质量误差小于20mDa;在精确质量数基础上,进一步采用同位素峰形校正检索技术(CLIPs), 实现了对目标农药分子式的准确识别,建立了在单位分辨率质谱上准确测定农药小分子化合物的方法,提升了单位分辨率质谱的定性能力。通过对丙草胺及哒螨灵二种农药的质谱碎片所获得的MassWorks精确质量数及元素组成推导其质谱碎裂机理, 通过对碎片的精确质量数测定可提高对目标物定性的准确性。  相似文献   

5.
Fragmentation studies using both an ion-trap mass analyzer and a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer were performed in order to establish the fragmentation pathways of organic molecules. A general strategy combining MSn data (n = 1-4) in an ion-trap analyzer with tandem mass spectrometry and in-source collision-induced dissociation tandem mass spectrometry (CID MS/MS) in a Q-TOF instrument was applied. The MSn data were used to propose a tentative fragmentation pathway following genealogical relationships. When several assignments were possible, MS/MS and in-source CID MS/MS (Q-TOF) allowed the elemental compositions of the fragments to be confirmed. Quaternary ammonium herbicides (quats) were used as test compounds and their fragmentation pathways were established. The elemental composition of the fragments was confirmed using the TOF analyzer with relative errors <0.0023 Da. Some fragments previously reported in the literature were reassigned taking advantage of the high mass resolution and accuracy of the Q-TOF instrument, which made it possible to solve losses where nitrogen was involved.  相似文献   

6.
何坚  黄如俊  李刚  唐紫超  林水潮 《分析化学》2012,40(10):1616-1621
常用的气体分析质谱仪使用四极杆质谱作为分析器,分辨率一般低于300,无法解决同质量数离子带来的干扰问题.本实验自行研制了一种小型高分辨气体分析质谱仪,它采用电子轰击离子源反射式飞行时间质量分析器.仪器腔体总长45 cm,在m/z 28的位置,质量分辨率达到3000(Full width at half maximum,FWHM),实现了CO和N2的半峰谷分离;在m/z 69的位置,仪器分辨率达到5000(FWHM).在直接大气压进样条件下,可以检测到空气中136Xe(含量7.8 μ g/m3)和80Kr(含量2.8 μg/m3).使用ADC采集时,仪器的动态范围为1 06.该仪器将作为高端气体质谱仪,应用于过程监测在线分析、环境有机挥发物研究、热分析质谱及催化反应监测等领域.  相似文献   

7.
Stepwise-external calibration has previously been shown to produce sub part-per-million (ppm) mass accuracy for the MALDI-FTICR/MS analyses of peptides up to m/z 2500. The present work extends these results to ions up to m/z 4000. Mass measurement errors for ions of higher mass-to-charge are larger than for ions below m/z 2500 when using conventional chirp excitation to detect ions. Mass accuracy obtained by using stored waveform inverse Fourier transform (SWIFT) excitation was evaluated and compared with chirp excitation. Analysis of measurement errors reveals that SWIFT excitation provides smaller deviations from the calibration equation and better mass accuracy than chirp excitation for a wide mass range and for widely varying ion populations.  相似文献   

8.
The advantages and disadvantages of acquiring tandem mass spectra by collision-induced dissociation (CID) of peptides in linear ion trap Fourier-transform hybrid instruments are described. These instruments offer the possibility to transfer fragment ions from the linear ion trap to the FT-based analyzer for analysis with both high resolution and high mass accuracy. In addition, performing CID during the transfer of ions from the linear ion trap (LTQ) to the FT analyzer is also possible in instruments containing an additional collision cell (i.e., the "C-trap" in the LTQ-Orbitrap), resulting in tandem mass spectra over the full m/z range and not limited by the ejection q value of the LTQ. Our results show that these scan modes have lower duty cycles than tandem mass spectra acquired in the LTQ with nominal mass resolution, and typically result in fewer peptide identifications during data-dependent analysis of complex samples. However, the higher measured mass accuracy and resolution provides more specificity and hence provides a lower false positive ratio for the same number of true positives during database search of peptide tandem mass spectra. In addition, the search for modified and unexpected peptides is greatly facilitated with this data acquisition mode. It is therefore concluded that acquisition of tandem mass spectral data with high measured mass accuracy and resolution is a competitive alternative to "classical" data acquisition strategies, especially in situations of complex searches from large databases, searches for modified peptides, or for peptides resulting from unspecific cleavages.  相似文献   

9.
In this study, we benefit from the combination of liquid chromatography (LC)/time-of-flight (TOF) MS accurate mass measurements to generate elemental compositions of ions and LC/ion trap multiple MS (MSn) providing complementary structural information, which is useful for the elucidation of unknown organic compounds at trace levels in complex food extracts. We have applied this approach to investigate different citrus fruits extracts, and we have identified two post-harvest fungicides (imazalil and prochloraz), the main degradation product of imazalil ([M + H]+, m/z 257) and a non-previously reported prochloraz degradation product ([M + H]+, m/z 282). The database-mediated identification of the parent compounds was based on the generated elemental composition obtained from accurate mass measurements and additional qualitative information from the high resolution chlorine isotopic clusters of both the protonated molecules (imazalil, [M + H]+ 297.0556, <0.1 ppm error, 2-Cl; prochloraz, [M + H]+ 376.0381, 1.9 ppm error, 3-Cl) and their characteristic fragments ions (imazalil: m/z 255 and 159; prochloraz: m/z 308 and 266). The correlation between the structural information provided by ion trap MS/MS fragmentation pathways of the parent species and the TOF accurate mass elemental composition data of the degradation products were the key to elucidate the structures of the degradation products of both post-harvest fungicides. Finally, where standards were not available (prochloraz), further confirmation was obtained by synthesizing the proposed degradation product by acid hydrolysis of the parent standard and confirmation by LC/TOF-MS.  相似文献   

10.
This study offers a unique insight into the mass accuracy and resolving power requirements in MS/MS analyses of complex product ion spectra. In the examples presented here, accurate mass assignments were often difficult because of multiple isobaric interferences and centroid mass shifts. The question then arose whether the resolving power of a medium-resolution quadrupole time-of flight (QqTOF) is sufficient or high-resolution Fourier-transform ion cyclotron resonance (FT-ICR) is required for unambiguous assignments of elemental compositions. For the comparison, two paralytic shellfish poisons (PSP), saxitoxin (STX) and neosaxitoxin (NEO), with molecular weights of 299 and 315 g x mol(-1), respectively, were chosen because of the high peak density in their MS/MS spectra. The assessment of QqTOF collision-induced dissociation spectra and FT-ICR infrared multiphoton dissociation spectra revealed that several intrinsic dissociation pathways leading to isobaric fragment ions could not be resolved with the QqTOF instrument and required FT-ICR to distinguish very close mass differences. The second major source of interferences was M + 1 species originating from coactivated 13C12Cc-1 ion contributions of the protonated molecules of the PSPs. The problem in QqTOF MS results from internal mass calibration when the MH+ ions of analyte and mass calibrant are activated at the same time in the collision or trapping cell. Although FT-ICR MS readily resolved these interfering species, the QqTOF did not provide resolving power >20,000 (full width at half maximum) required to separate most isobaric species. We were able to develop a semi-internal QqTOF calibration technique that activated only the isolated 12C isotope species of the protonated molecules, thus reducing the M + 1 interferences significantly. In terms of overall automated elemental formulas assignment, FT-ICR MS achieved the first formula hit for 100% of the product ions, whereas the QqTOF MS hit rate was only 56 and 65% for STX and NEO product ions, respectively. External mass calibration from commercial FT-ICR and QqTOF instruments gave similar results.  相似文献   

11.
Exceptionally high mass resolving power and mass accuracy combined with tandem mass spectrometry (MSn) capability make Fourier transform ion cyclotron resonance mass spectrometry a powerful tool for structure verification and determination of biological macromolecules. By means of local internal calibration and electron mass correction, mass accuracy better than ±0.5 ppm was achieved for two oligosaccharide antibiotics, Saccharomicins A and B, consistent with the proposed elemental compositions based upon NMR data. High resolution and high mass accuracy MS/MS data were obtained for both oligosaccharides by use of infrared multiphoton dissociation (IRMPD) with a 40 W continuous-wave CO2 laser. The spectra were charge-state deconvolved by the “Z-score” algorithm to yield much simpler mass-only spectra. Sequences of 15 sugar residues could be confirmed from the charge state deconvolved accurate mass MS/MS spectra for Saccharomicins A and B, even without use of traditional prior permethylation. A fragment corresponding to an internal sugar loss rearrangement was observed by IRMPD and studied by collision activated dissociation MS4.  相似文献   

12.
A compact laser-desorption time-of-flight mass spectrometer using a 600 ps nitrogen laser and 1 Gsample/s transient recorder is described. The instrument incorporates two electrically-isolatable, reflecting flight tubes designed for subsequent configuration of the mass spectrometer as a tandem instrument. In this first report, we compare mass resolution in the laser-desorption mass spectra of an organic dye, sinapinic and caffeic acid matrices, and several small peptides. For directly desorbed ions, peak widths are generally of the order of 11 to 13 ns, so that mass resolution increases with increasing mass. For peptide ions in the range of 500 to 1000 u, formed by matrix-assisted desorption, peak widths range from 9.5 to 17.6 ns and increase with mass. However, better than unit mass resolution (1600 to 2400) is maintained throughout this mass range. Mass measurement accuracy is better than 0.1 u using a single calibration peak and a prompt start trigger pulse. Prospects for extending mass range and resolution are discussed.  相似文献   

13.
IntroductionIn1893,Pietro Biginelli reported the first synthe-sis(termed the Biginelli reaction)of3,4-dihydropyrim-idinone(denoted as“oxo-orO-Biginelli compound”in-cluding its derivatives,type A in Scheme1).In thelast decade,interest in these compounds …  相似文献   

14.
A simple mathematical technique for improving mass calibration accuracy of linear delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (DE MALDI-TOFMS) spectra is presented. The method involves fitting a parabola to a plot of Delta(m) vs. mass data where Delta(m) is the difference between the theoretical mass of calibrants and the mass obtained from a linear relationship between the square root of m/z and ion time of flight. The quadratic equation that describes the parabola is then used to correct the mass of unknowns by subtracting the deviation predicted by the quadratic equation from measured data. By subtracting the value of the parabola at each mass from the calibrated data, the accuracy of mass data points can be improved by factors of 10 or more. This method produces highly similar results whether or not initial ion velocity is accounted for in the calibration equation; consequently, there is no need to depend on that uncertain parameter when using the quadratic correction. This method can be used to correct the internally calibrated masses of protein digest peaks. The effect of nitrocellulose as a matrix additive is also briefly discussed, and it is shown that using nitrocellulose as an additive to the alpha-cyano-4-hydroxycinnamic acid (alphaCHCA) matrix does not significantly change initial ion velocity but does change the average position of ions relative to the sample electrode at the instant the extraction voltage is applied.  相似文献   

15.
Precision proteomics requires high-resolution and high mass accuracy peptide measurements. The Orbitrap instrument achieves excellent resolution on a chromatographic time scale and its design is favorable for very high mass accuracy. Here we describe how mass precision for each peptide increases successively by considering all associated measurements, starting from the MS peak and proceeding to its chromatographic elution profile, isotope envelope, and stable isotope pair in SILAC measurements. We extract peptide charge pairs to perform nonlinear recalibration of the Orbitrap mass scale through spline interpolation. The deviation of mass values determined from charge pairs is used to convert mass precision to mass accuracy for subsequent database search. The corrected mass precision is consistent with the mass accuracy independently determined by database identification. Individual mass deviations range from below 100 ppb for peptides with many associated mass measurements and good signal intensities to low ppm for peptides with few mass measurements and signals close to the noise level. This extremely high and individualized mass accuracy is equivalent to a substantial increase in database identification score.  相似文献   

16.
Improved resolution for a miniaturized instrument is demonstrated at high masses using a pulsed extraction, 3(") linear time-of-flight (TOF) mass analyzer. This illustrates the utility of a small and simple mass spectrometer for biological/medical analyses. Current and future applications suggested by this instrument include rapid mass spectral reading of oligonucleotides that differ in one base (single nucleotide polymorphisms), distinction of biomarker signatures from different species of bacterial spores (biological weapons detection) and point-of-care instruments for proteomics-based diagnostics. We have incorporated a two-stage, pulsed-extraction design that places the focal plane of the ions at the detector channel plate surface. The ions are accelerated to a total energy of 12 keV to enable detection of high-mass proteins in a design that incorporates a floatable flight tube set at the voltage of the front channel plate of the detector. The resultant elimination of post-acceleration at the detector is intended to improve mass resolution by reducing the difference in arrival times between ions and their neutral products. Resolutions of one part in 1200 at m/z 4500 and one part in 600 at m/z 12 000 have been achieved. Proteins with molecular masses up to 66 000 Da, mixtures of oligonucleotides, and biological spores have all been successfully measured, results that increase the potential use of this TOF analyzer.  相似文献   

17.
A MALDI source is interfaced to a modified LTQ Orbitrap XL instrument. This work gives insight into the MALDI source design and shows results obtained with the MALDI source coupled to an accurate mass, high-resolution hybrid mass spectrometer. MALDI-produced ions and fragment ions thereof produced in the mass spectrometer may be analyzed and detected by the Orbitrap analyzer at a maximum mass resolution of 100,000 (FWHM) at m/z 400 with high mass accuracy. An accuracy of ≤2 ppm is achieved by internal mass calibration using lock mass functionality; using external mass calibration, an accuracy of ≤3 ppm is routinely obtained. External mass calibration of the hybrid mass spectrometer is performed using a standard calibration mixture of different peptides and matrix components. The instrumental capabilities are demonstrated for analytical methodologies such as Protein ID using Peptide Mass Fingerprint (PMF) and MS/MS analyses of small molecule samples. Stability of mass accuracy and signal-to-noise ratio for low samples loads (on plates) are demonstrated as well as the experimental dynamic range using α-cyano-4-hydroxy cinnamic acid (CHCA) matrix.  相似文献   

18.
Zhong Y  Hyung SJ  Ruotolo BT 《The Analyst》2011,136(17):3534-3541
High-accuracy, high-resolution ion mobility measurements enable a vast array of important contemporary applications in biological chemistry. With the recent advent of both new, widely available commercial instrumentation and also new calibration datasets tailored for the aforementioned commercial instrumentation, the possibilities for extending such high performance measurements to a diverse set of applications have never been greater. Here, we assess the performance characteristics of a second-generation traveling-wave ion mobility separator, focusing on those figures of merit that lead to making measurements of collision cross-section having both high precision and high accuracy. Through performing a comprehensive survey of instrument parameters and settings, we find instrument conditions for optimized drift time resolution, cross-section resolution, and cross-section accuracy for a range of peptide, protein and multi-protein complex ions. Moreover, the conditions for high accuracy IM results are significantly different from those optimized for separation resolution, indicating that a balance between these two metrics must be attained for traveling wave IM separations of biomolecules. We also assess the effect of ion heating during IM separation on instrument performance.  相似文献   

19.
Calibrating mixtures of residual gases in quadrupole mass spectrometry (QMS) can be difficult since low m/z ratios of molecular ions and their fragments result in overlap of signals especially in the lower mass regions. This causes problems in univariate calibration methods and encourages use of full spectral multivariate methods. Experimental assessment of regression methods has limitations since experimental sources of error can only be minimised and not entirely eliminated. A method of simulating full spectra at low and high resolution to accurate masses is described and these are then used for a calibration study of some popular linear regression methods [classical least squares regression (CLS), partial least squares (PLS), principal component regression (PCR)].  相似文献   

20.
Mass spectrometry imaging by Fourier transform ion cyclotron resonance (FT-ICR) yields hundreds of unique peaks, many of which cannot be resolved by lower performance mass spectrometers. The high mass accuracy and high mass resolving power allow confident identification of small molecules and lipids directly from biological tissue sections. Here, calibration strategies for FT-ICR MS imaging were investigated. Sub-parts-per-million mass accuracy is demonstrated over an entire tissue section. Ion abundance fluctuations are corrected by addition of total and relative ion abundances for a root-mean-square error of 0.158?ppm on 16,764 peaks. A new approach for visualization of FT-ICR MS imaging data at high resolution is presented. The ??Mosaic Datacube?? provides a flexible means to visualize the entire mass range at a mass spectral bin width of 0.001?Da. The high resolution Mosaic Datacube resolves spectral features not visible at lower bin widths, while retaining the high mass accuracy from the calibration methods discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号