首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Under most physiological conditions, glucose, or carbohydrate (CHO), homeostasis is tightly regulated. In order to mechanistically appraise the origin of circulating glucose (e.g. via either gluconeogenesis, glycogenolysis or oral glucose intake), and its regulation and oxidation, the use of stable isotope tracers is now a well-accepted analytical technique. Methodologically, liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) can replace gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC/C/IRMS) for carrying out compound-specific (13)C isotopic analysis. The LC/IRMS approach is well suited for studying glucose metabolism, since the plasma glucose concentration is relatively high and the glucose can readily undergo chromatography in an aqueous mobile phase. Herewith, we report two main methodological approaches in a single instrument: (1) the ability to measure the isotopic enrichment of plasma glucose to assess the efficacy of CHO-based treatment (cocoa-enriched) during cycling exercise with healthy subjects, and (2) the capacity to carry out bulk isotopic analysis of labeled solutions, which is generally performed with an elemental analyzer coupled to IRMS. For plasma samples measured by LC/IRMS the data show a isotopic precision SD(δ(13)C) and SD(APE) of 0.7 ‰ and 0.001, respectively, with δ(13)C and APE values of -25.48 ‰ and 0.06, respectively, being generated before and after tracer administration. For bulk isotopic measurements, the data show that the presence of organic compounds in the blank slightly affects the δ(13)C values. Despite some analytical limitations, we clearly demonstrate the usefulness of the LC/IRMS especially when (13)C-glucose is required during whole-body human nutritional studies.  相似文献   

2.
The scope of compound-specific stable isotope analysis has recently been increased with the development of the LC IsoLink which interfaces high-performance liquid chromatography (HPLC) and isotope ratio mass spectrometry (IRMS) to provide online LC/IRMS. This enables isotopic measurement of non-volatile compounds previously not amenable to compound-specific analysis or requiring substantial modification for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), which results in reduced precision. Amino acids are an example of such compounds.We present a new chromatographic method for the HPLC separation of underivatized amino acids using an acidic, aqueous mobile phase in conjunction with a mixed-mode stationary phase that can be interfaced with the LC IsoLink for compound-specific delta13C analysis. The method utilizes a reversed-phase Primesep-A column with embedded, ionizable, functional groups providing the capability for ion-exchange and hydrophobic interactions. Baseline separation of 15 amino acids and their carbon isotope values are reported with an average standard deviation of 0.18 per thousand (n = 6). In addition delta13C values of 18 amino acids are determined from modern protein and archaeological bone collagen hydrolysates, demonstrating the potential of this method for compound-specific applications in a number of fields including metabolic, ecological and palaeodietary studies.  相似文献   

3.
Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high‐precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment δ13C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline‐resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed‐mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed‐mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed‐mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a practical guide for the development of new chromatographic methods compatible with LC/IRMS applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values.  相似文献   

5.
液相色谱-同位素比质谱(LC-IRMS)是一种特征化合物同位素分析技术,该技术利用LC IsoLink接口设备实现液相色谱与同位素比质谱的联用,通过检测目标物质的稳定碳同位素比(δ13C),实现样品的产地来源与品质真实性鉴定。该文总结了IRMS与LC-IRMS技术的概况,以及过去20年LC-IRMS的发展历程;归纳整理了LC-IRMS在食品安全、生态与环境、生命科学及考古学等领域的应用情况;评述了LC-IRMS面临的技术局限、挑战及其未来的发展趋势。  相似文献   

6.
A commercial interface coupling liquid chromatography (LC) to a continuous‐flow isotope ratio mass spectrometry (CF‐IRMS) instrument was used to determine the δ13C of dissolved organic carbon (DOC) in natural waters. Stream and soil waters from a farmland plot in a hedgerow landscape were studied. Based on wet chemical oxidation of dissolved organics the LC/IRMS interface allows the on‐line injection of small volumes of water samples, an oxidation reaction to produce CO2 and gas transfer to the isotope ratio mass spectrometer. In flow injection analysis (FIA) mode, bulk DOC δ13C analysis was performed on aqueous samples of up to 100 μL in volume in the range of DOC concentration in fresh waters (1–10 mg C.L–1). Mapping the DOC δ13C spatial distribution at the plot scale was made possible by this fairly quick method (10 min for triplicate analyses) with little sample manipulation. The relative contributions of different plot sectors to the DOC pool in the stream draining the plot were tentatively inferred on the basis of δ13C differences between the hydrophilic and hydrophobic components. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In the field of isotope ratio mass spectrometry, the introduction of an interface allowing the connection of liquid chromatography (LC) and isotope ratio mass spectrometry (IRMS) has opened a range of new perspectives. The LC interface is based on a chemical oxidation, producing CO2 from organic molecules. While first results were obtained from the analysis of low molecular weight compounds, the application of compound-specific isotope analysis by irm-LC/MS to other molecules, in particular biomolecules, is presented here. The influence of the LC flow rate on the CO2 signal and on the observed delta13C values is demonstrated. The limits of quantification for angiotensin III and for leucine were 100 and 38 pmol, respectively, with a standard deviation of the delta13C values better than 0.4 per thousand. Also, accuracy and precision of delta13C values for elemental analyser-IRMS and flow injection analysis-IRMS (FIA-LC/MS) were compared. For compounds with molecular weights ranging from 131 to 66,390 Da, precision was better than 0.3 per thousand, and accuracy varied from 0.1 to 0.7 per thousand. In a second part of the work, a two-dimensional (2D)-LC method for the separation of 15 underivatised amino acids is demonstrated; the precision of delta13C values for several amino acids by irm-LC/MS was better than 0.3 per thousand at natural abundance. For labelled mixtures, the coefficient of variation was between 1% at 0.07 atom % excess (APE) for threonine and alanine, and around 10% at 0.03 APE for valine and phenylalanine. The application of irm-LC/MS to the determination of the isotopic enrichment of 13C-threonine in an extract of rat colon mucosa demonstrated a precision of 0.5 per thousand, or 0.001 atom %.  相似文献   

8.
Compound‐specific isotope analysis (CSIA) by liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) has until now been based on ion‐exchange separation. In this work, high‐temperature reversed‐phase liquid chromatography was coupled to, and for the first time carefully evaluated for, isotope ratio mass spectrometry (HT‐LC/IRMS) with four different stationary phases. Under isothermal and temperature gradient conditions, the column bleed of XBridge C18 (up to 180 °C), Acquity C18 (up to 200 °C), Triart C18 (up to 150 °C), and Zirchrom PBD (up to 150 °C) had no influence on the precision and accuracy of δ13C measurements, demonstrating the suitability of these columns for HT‐LC/IRMS analysis. Increasing the temperature during the LC/IRMS analysis of caffeine on two C18 columns was observed to result in shortened analysis time. The detection limit of HT‐RPLC/IRMS obtained for caffeine was 30 mg L–1 (corresponding to 12.4 nmol carbon on‐column). Temperature‐programmed LC/IRMS (i) accomplished complete separation of a mixture of caffeine derivatives and a mixture of phenols and (ii) did not affect the precision and accuracy of δ13C measurements compared with flow injection analysis without a column. With temperature‐programmed LC/IRMS, some compounds that coelute at room temperature could be baseline resolved and analyzed for their individual δ13C values, leading to an important extension of the application range of CSIA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The introduction of liquid chromatography coupled with isotope ratio mass spectrometry (LC/IRMS) as an analytical tool for the measurement of isotope ratios in non‐volatile analytes has somewhat simplified the analytical cycle from sample collection to analysis mainly due to the avoidance of the extensive sample processing and derivatisation that were necessary for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Here we test the performance of coupling strong anion exchange to IRMS using only the second commercially available interface; the Liquiface. The system was modified from installation specification to improve peak resolution in the interface and maintain peak separation from the column to the mass spectrometer. The system performance was assessed by the determination of sensitivity, accuracy and precision attained from carbohydrate separations. The system performed satisfactorily after modifications, resulting in maintenance of peak resolution from column to mass spectrometer. The sensitivity achieved suggested that ~150 ng carbon could be analysed with acceptable precision (<0.3‰). Accuracy was maintained in the interface as determined by correlation with offline techniques, resulting in regression coefficient of r2 = 0.98 and a slope of 0.99. The average precision achieved for the separation of seven monosaccharides was 0.36‰. The integration of a carbonate removal device limited the effect of background carbon perturbations in the mass spectrometer associated with eluent gradients, and the coupling of strong anion‐exchange chromatography with IRMS was successfully achieved using the Liquiface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Amino acids are the building blocks of proteins and the analysis of their 13C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)‐based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ13C determination. Mixtures of underivatised amino acids (0.1–0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre‐injector on‐line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO, 5–25 mM). The total run time was 70 min. The average δ13C precision of baseline‐resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for 13C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C‐isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour‐intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 µL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C‐isotopic enrichment in plasma samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.  相似文献   

13.
To study carbohydrate digestion and glucose absorption, time-dependent (13)C enrichment in plasma glucose is measured after oral administration of naturally occurring (13)C-enriched carbohydrates. The isotope enrichment of the administered carbohydrate is low (APE <0.1%) and plasma (13)C glucose measurements are routinely determined with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) or liquid chromatography/combustion/isotope ratio mass spectrometry (LC/C/IRMS). In this study, plasma glucose was converted into CO(2) by an in-tube reaction with yeast permitting direct measurement of (13)CO(2) in the headspace. Saccharomyces cerevisiae incubated under anaerobic conditions was able to convert sufficient glucose into CO(2) to produce a consistent CO(2) peak in IRMS with little variation in peak area and precise delta(13)C(PDB) values for corn glucose: -11.40 +/- 0.16 per thousand, potato glucose: -25.17 +/- 0.13 per thousand, and plasma glucose: -26.29 +/- 0.05 per thousand. The measurement showed high linearity (R(2) = 0.999) and selectivity and was not affected by the glucose concentration in the tested range of 5-15 mM. Comparison with GC/C/IRMS showed a good correlation of enrichment data: R(2) > 0.98 for both sources of glucose and plasma samples. Commercially available, instant dried baker's yeast was qualitatively and quantitatively comparable with freshly prepared yeast: R(2) > 0.96, slope 1.03 and 1.08 for glucose solutions and plasma, respectively. Thus, yeast conversion of plasma glucose into CO(2) and (13)C measurement applying a breath (13)CO(2) analyzer is an inexpensive, simple and equally accurate alternative to the more expensive and laborious GC/C/IRMS and LC/C/IRMS measurements.  相似文献   

14.
A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone.  相似文献   

15.
Determination of glutathione kinetics using stable isotopes requires accurate measurement of the tracers and tracees. Previously, the precursor and synthesized product were measured with two separate techniques, liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In order to reduce sample volume and minimize analytical effort we developed a method to simultaneously determine 13C‐glutathione as its dimeric form (GSSG) and its precursor [1‐13C]glycine in a small volume of erythrocytes in one single analysis. After having transformed 13C‐glutathione into its dimeric form GSSG, we determined both the intra‐erythrocytic concentrations and the 13C‐isotopic enrichment of GSSG and glycine in 150 µL of whole blood using liquid chromatography coupled to LC/IRMS. The results show that the concentration (range of µmol/mL) was reliably measured using cycloleucine as internal standard, i.e. with a precision better than 0.1 µmol/mL. The 13C‐isotopic enrichment of GSSG and glycine measured in the same run gave reliable values with excellent precision (standard deviation (sd) <0.3‰) and accuracy (measured between 0 and 5 APE). This novel method opens up a variety of kinetic studies with relatively low dose administration of tracers, reducing the total cost of the study design. In addition, only a minimal sample volume is required, enabling studies even in very small subjects, such as preterm infants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In archaeological studies, the isotopic enrichment values of carbon and nitrogen in bone collagen give a degree of information on dietary composition. The isotopic enrichments of individual amino acids from bone collagen and dietary protein have the potential to provide more precise information about the components of diet. A limited amount of work has been done on this, although the reliability of these studies is potentially limited by fractionation arising through hydrolysis of whole plant tissue (where reaction between amino acids and carbohydrates may occur) and, for certain amino acids, the use of derivatives (particularly trifluoroacetyl derivatives) for gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. The present study takes the approach of extracting the protein components of plant tissues before hydrolysis and using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS), which does not require derivatisation, for measurement of the isotopic enrichment of the amino acids. The protocol developed offers a methodology for consistent measurement of the δ(13)C values of amino acids, allowing isotopic differences between the individual amino acids from different plant tissues to be identified. In particular, there are highly significant differences between leaf and seed protein amino acids (leaf minus grain) in the cases of threonine (-4.1‰), aspartic acid (+3.5‰) and serine (-3.2‰). In addition to its intended application in archaeology, the technique will be of value in the fields of plant sciences, nutrition and environmental food-web studies.  相似文献   

17.
通过对比实验,研制了特定化合物碳同位素在线分析系统中连接气相色谱与同位素比质谱的核心部分——氧化反应装置,包括加热系统、氧化反应系统及接口系统,并以特定化合物的碳同位素分析为例,选用天然气工作标准样品,在600~950℃之间选择8个温度点进行了氧化反应实验,表明其碳同位素测定值(δ13C1,δ13C2,δ13C3)随反应温度升高而逐渐趋于稳定,符合氧化反应过程的一般规律.通过对不同碳数(1≤n≤31)烃类样品(工作标准、国际参考标准、天然气及原油样品)的测试,显示碳同位素值(δ13Calkane)的测试精度优于±(0.2~0.5)‰,满足研究需求,并有效降低了分析成本,具有良好的应用及推广价值.  相似文献   

18.
The utilisation of carbohydrate sources under exercise conditions is of considerable importance in performance sports. Incorporation of optimal profiles of macronutrients can improve endurance performance in athletes. However, gaining an understanding of the metabolic partitioning under sustained exercise can be problematical and isotope labelling approaches can help quantify substrate utilisation. The utilisation of oral galactose was investigated using 13C‐galactose and measurement of plasma galactose and glucose enrichment by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS). As little as 100 μL plasma could readily be analysed with only minimal sample processing. Fucose was used as a chemical and isotopic internal standard for the quantitation of plasma galactose and glucose concentrations, and isotopic enrichment. The close elution of galactose and glucose required a correction routine to be implemented to allow the measurement, and correction, of plasma glucose δ13C, even in the presence of very highly enriched galactose. A Bland‐Altman plot of glucose concentration measured by LC/IRMS against glucose measured by an enzymatic method showed good agreement between the methods. Data from seven trained cyclists, undergoing galactose supplementation before exercise, demonstrate that galactose is converted into glucose and is available for subsequent energy metabolism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.  相似文献   

20.
The interest in compound-specific isotope analysis for product authenticity control and source differentiation in environmental sciences has grown rapidly during the last decade. However, the isotopic analysis of very polar analytes is a challenging task due to the lack of suitable chromatographic separation techniques which can be used coupled to isotope ratio mass spectrometry. In this work, we present the first method to measure carbon isotope compositions of the widely applied herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA) by liquid chromatography coupled to isotope ratio mass spectrometry. We demonstrate that this analysis can be carried out either in cation exchange or in reversed-phase separation modes. The reversed-phase separation yields a better performance in terms of resolution compared with the cation exchange method. The measurement of commercial glyphosate herbicide samples show its principal applicability and reveals a wide range of δ13C values between ?24 and ?34 ‰ for different manufacturers. The absolute minimum amounts required to perform a precise and accurate determination of carbon isotope compositions of glyphosate and AMPA were in the sub-microgram range. The method proposed is sensitive enough to further perform the experiments that are necessary to better understand the carbon isotope fractionation associated to the natural degradation of glyphosate into AMPA. Furthermore, it can be used for contaminant source allocation and product authenticity as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号