首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper, polyimide surfaces were processed with pulsed KrF laser radiation at fluences near the ablation threshold. The morphology of the processed surfaces was studied by scanning electron microscopy and chemical analyses performed by electron dispersive spectroscopy. The formation of conical structures was observed for radiation fluences lower than 0.5 J/cm2. The areal density of cones increases with the number of pulses and decreases with the radiation fluence. At low fluences (<150 J/cm2), cones are formed due to shadowing by calcium phosphate impurities while for higher fluences the main mechanism of cones formation is believed to be radiation hardening.  相似文献   

2.
The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate).The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry.It was found that for laser fluences up to 1.5 J/cm2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm2 the polyepichlorohydrin films present deviations from the bulk polymer.Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm2).The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material.The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.  相似文献   

3.
Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE has been applied for deposition of fullerenes for the first time and we have studied the growth of thin films of solid C60. The fragmentation of C60 fullerene molecules induced by ns ablation in vacuum of a frozen anisole target with C60 was investigated by matrix-assisted laser desorption/ionization (MALDI). Our findings show that intact fullerene films can be produced with laser fluences ranging from 0.15 J/cm2 up to 1.5 J/cm2.  相似文献   

4.
Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm2 to 8 J/cm2. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity.  相似文献   

5.
p-tert-butylcalix[4]arene thin films were elaborated by pulsed laser deposition (PLD) using a KrF excimer laser with fluences from 0.13 to 1 J/cm2. The conservation of the molecule composition and conformation, as verified by FTIR, is obtained for fluences lower than about 0.45 J/cm2. The refractive indices and thicknesses were measured by m-lines spectroscopy. The refractive indices have a step profile and are higher than for films elaborated by thermal evaporation. At higher fluences, the molecule conformation is changed and the step index profile is no longer valid. The effect of annealing on surface morphology and crystallization was studied by AFM and XRD. PACS 81.15.Fg; 81.05.Lg; 33.20.Ea; 78.20 Ci  相似文献   

6.
Thin chromium films, 60 nm thick, were deposited onto single-crystal silicon wafers. The samples were irradiated with 30 ns single pulses from a Nd: glass laser at fluences ranging from 0.4 to 2.25 J/cm2. Rutherford backscattering spectrometry, transmission electron microscopy and electron diffraction measurements evidence the formation of CrSi2 layers at the Cr/Si interface. The silicide thickness depends on the laser fluence.  相似文献   

7.
A simple analytical model for inverse pulsed laser deposition is proposed. In the model the motion of the evaporated material is assumed to emerge as from a point source located above the surface of evaporation at some distance. The obtained thickness profiles of inverse deposited films agree well with those calculated by the test particle Monte Carlo method. The proposed approach has been applied for analysis of experimental data on inverse pulsed laser deposition of graphite in nitrogen atmosphere with nanosecond pulses of laser fluences between 1 and 7 J/cm2. The model describes well the thickness profiles and pressure dependence of film growth rate for inverse deposition.  相似文献   

8.
The patterning of lanthanum-doped lead zirconate titanate (PLZT) and strontium-doped lead zirconate titanate (PSZT) thin films has been examined using a 5-ns pulsed excimer laser. Both types of film were deposited by rf magnetron sputtering with in situ heating and a controlled cooling rate in order to obtain the perovskite-structured films. The depth of laser ablation in both PSZT and PLZT films showed a logarithmic dependence on fluence. The ablation rate of PLZT films was slightly higher than that of PSZT films over the range of fluence (10–150 J/cm2) and increased linearly with number of pulses. The threshold fluence required to initiate ablation was ∼ 1.25 J/cm2 for PLZT and ∼ 1.87 J/cm2 for PSZT films. Individual squares were patterned with areas ranging from 10×10 μm2 up to 30×30 μm2 using single and multiple pulses. The morphology of the etched surfaces comprised globules which had diameters of 200–250 nm in PLZT and 1400 nm in PSZT films. The diameter of the globules has been shown to increase with fluence until reaching an approximately constant size at ≤ 20 J/cm2 in both types of film. The composition of the films following ablation has been compared using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. PACS 79.20.Ds; 82.80.Pv; 82.80.Ej  相似文献   

9.
Pristine ZnO thin films have been deposited with zinc acetate [Zn(CH3COO)2], mono-ethanolamine (stabilizer), and isopropanol solutions by sol-gel method. After deposition, pristine ZnO thin films have been irradiated by excimer laser (λ = 248, KrF) source with energy density of 50 mJ/cm2 for 30 sec. The effect of excimer laser annealing on the optical and structural properties of ZnO thin films are investigated by photoluminescence and field emission scanning electron microscope. As-grown ZnO thin films show a huge peak of visible region and a wide full width at half maximum (FWHM) of UV region due to low quality with amorphous ZnO thin films. After KrF excimer laser annealing, ZnO thin films show intense near-band-edge (NBE) emission and weak deep-level emission. The optically improved pristine ZnO thin films have demonstrated that excimer laser annealing is novel treatment process at room temperature.  相似文献   

10.
In this paper the surface topography of titanium samples irradiated by femtosecond laser pulses is described. When the fluence is about 0.5 J/cm2 periodic ripples with a period of about 700 nm are formed. For fluences between 0.5 and 2 J/cm2, a microcolumnar surface texture develops in the center of the irradiated spots and ripples are formed in the periphery of the spots. When experiments are performed with a non-stationary sample, the microcolumns exhibit ripples similar to those observed when the radiation fluence is about 0.5 J/cm2 and in the outer regions of the irradiated areas for fluences between 0.5 and 2 J/cm2. Since the energy distribution in the transverse cross-section of the laser beam is Gaussian, we conclude that the ripples form when the microcolumns are subjected to fluences near the melting threshold of the material at the trailing edge of the moving laser beam.  相似文献   

11.
Preparation of super-hard coatings by pulsed laser deposition   总被引:1,自引:0,他引:1  
Amorphous diamond-like carbon (DLC) films and nanocrystalline cubic boron nitride (c-BN) films were prepared by pulsed laser deposition. DLC films with 80 to 85% sp3 bonds prepared at a laser fluence above 6 J/cm2 and a substrate temperature below 100 °C show high compressive stresses in the range of 8 to 10 GPa. Those stresses can be completely removed by means of pulsed laser annealing, allowing the preparation of DLC films with several-micrometre thickness. c-BN films were prepared with additional ion-beam bombardment at a substrate temperature of 250 °C. The properties of DLC and c-BN films deposited at high growth rates up to 100 nm/min are presented . PACS 81.15.Fg; 68.60.Bs: 62.40.+i  相似文献   

12.
In this work, we report on laser ablation of thermally grown SiO2 layers from silicon wafer substrates, employing an 8–9 ps laser, at 1064 (IR), 532 (VIS) and 355 nm (UV) wavelengths. High-intensity short-pulse laser radiation allows direct absorption in materials with bandgaps higher than the photon energy. However, our experiments show that in the intensity range of our laser pulses (peak intensities of <2×1012 W/cm2) the removal of the SiO2 layer from silicon wafers does not occur by direct absorption in the SiO2 layer. Instead, we find that the layer is removed by a “lift off” mechanism, actuated by the melting and vaporisation of the absorbing silicon substrate. Furthermore, we find that exceeding the Si melting threshold is not sufficient to remove the SiO2 layer. A second threshold exists for breaking of the layer caused by sufficient vapour pressure. For SiO2 layer ablation, we determine layer thickness dependent minimum fluences of 0.7–1.2 J/cm2 for IR, 0.1–0.35 J/cm2 for VIS and 0.2–0.4 J/cm2 for UV wavelength. After correcting the fluences by the reflected laser power, we show that, in contrast to the melting threshold, the threshold for breaking the layer depends on the SiO2 thickness.  相似文献   

13.
We have measured time-resolved laser-induced incandescence of flame-generated soot under high-vacuum conditions (4.1×10−6 mbar) at an excitation wavelength of 532 nm with laser fluences spanning 0.06–0.5 J/cm2. We generated soot in an ethylene/air diffusion flame, introduced it into the vacuum system with an aerodynamic lens, heated it using a pulsed laser with a spatially homogeneous and temporally smooth laser profile, and recorded LII temporal profiles at 685 nm. At low laser fluences LII signal decay rates are slow, and LII signals persist beyond the residence time of the soot particles in the detection region. At these fluences, the temporal maximum of the LII signal increases nearly linearly with increasing laser fluence until reaching a plateau at ∼0.18 J/cm2. At higher fluences, the LII signal maximum is independent of laser fluence within experimental uncertainty. At these fluences, the LII signal decays rapidly during the laser pulse. The fluence dependence of the vacuum LII signal is qualitatively similar to that observed under similar laser conditions in an atmospheric flame but requires higher fluences (by ∼0.03 J/cm2) for initiation. These data demonstrate the feasibility of recording vacuum LII temporal profiles of flame-generated soot under well-characterized conditions for model validation.  相似文献   

14.
Picosecond laser (10.4 ps, 1064 nm) ablation of the nickel-based superalloy C263 is investigated at different pulse repetition rates (5, 10, 20, and 50 kHz). The two ablation regimes corresponding to ablation dominated by the optical penetration depth at low fluences and of the electron thermal diffusion length at high fluences are clearly identified from the change of the surface morphology of single pulse ablated craters (dimples) with fluence. The two corresponding thresholds were measured as F th(D1)1=0.68±0.02 J/cm2 and F th(D2)1=2.64±0.27 J/cm2 from data of the crater diameters D 1,2 versus peak fluence. The surface morphology of macroscopic areas processed with a scanning laser beam at different fluences is characterised by ripples at low fluences. As the fluence increases, randomly distributed areas among the ripples are formed which appear featureless due to melting and joining of the ripples while at high fluences the whole irradiated surface becomes grainy due to melting, splashing of the melt and subsequent resolidification. The throughput of ablation becomes maximal when machining at high pulse repetition rates and with a relatively low fluence, while at the same time the surface roughness is kept low.  相似文献   

15.
This study investigates the use of ultrashort femtosecond laser pulses to induce hydrophobic properties on PMMA surfaces. The modification of surface wetting property exhibits a strong dependence on the amount of energy deposited on the PMMA surface. A simple equation has been deduced from the laser parameters to express the energy deposition. It was revealed that water contact angle (WCA) of more than 120°, with a maximum of around 125°, could be achieved when the total energy deposited per unit area on the PMMA surface ranged from 600 J/cm2 to 900 J/cm2 at an energy deposition rate of around 50 J/cm2/s. Beyond this range, WCA reduced with increasing amount of energy deposition. Furthermore, with higher energy deposition rate or higher laser fluence, total energy required to induce hydrophobic surfaces was reduced. Under different energy deposition, the quantity of polar groups or non-polar groups induced was responsible for the changes in WCA and thus the different surface hydrophobicity.  相似文献   

16.
The damage morphology of germanium surfaces using femtosecond laser pulses of various fluences and number of pulses is reported. The single pulse damage threshold in the present experiment was 9.7±4.0×10−13 W/cm2. The experimental threshold value was compared with theory, considering the damage threshold as the melting threshold. The cooling rate calculated on the basis of present results is 2.4×1015°C/s. Recrystallization was the common feature of the damage morphology. For fluences greater than the single pulse damage-threshold micropits and spherical grains of micron size were formed in the damaged surface. Ablation (surface removal) was also observed at higher fluences (at two or three times of damage threshold value). The damage morphology, induced by multiple pulses, was unaffected for linear and circular polarization.  相似文献   

17.
The possibility of pulsed laser deposition of thin films from human tooth targets was studied, since bioceramic thin film coatings on dental and orthopaedic implants may have their surface characteristics for biointegration improved. Pellets were pressed from tooth powder at different pressures and ablated with pulses of ArF (=193 nm) and KrF (=248 nm) excimer lasers with fluences up to 4.5 and 12 J/cm2, respectively. Layers were deposited onto heated (250 °C) titanium, glass, and KBr substrates. The increase of the pellet pressing pressure from 150 to 450 MPa enhanced the roughness of the deposited films. IR spectroscopic measurements showed that the chemical composition of the films were close to that of original tooth material under appropriate fluence. The adherence of the layers to the substrates could be significantly improved by post annealing at 550 °C. PACS 81.15.Fg; 68.55.Jk; 87.68.+z  相似文献   

18.
Esteves-Oliveira  M.  Apel  C.  Gutknecht  N.  Velloso  W. F.  Cotrim  M. E. B.  Eduardo  C. P.  Zezell  D. M. 《Laser Physics》2008,18(4):478-485
This study investigated whether subablative-pulsed CO2 laser (10.6 μm) irradiation, using fluences lower than 1 J/cm2, was capable of reducing enamel acid solubility. Fifty-one samples of bovine dental enamel were divided into three groups: control group, which was not irradiated (CG); group laser A (LA) irradiated with 0.3 J/cm2; and group laser B (LB) irradiated with 0.7 J/cm2. After irradiation, the samples were subjected to demineralization in an acetate buffer solution and were then analyzed by SEM. A finite-element model was used to calculate the temperature increase. The calcium and phosphorous content in the demineralization solution were measured with an ICP-OES. ANOVA and the t-test pairwise comparison (p < 0.016) revealed that LB showed significantly lower mean Ca and P content values in the demineralization solution than other groups. A reduction in the enamel solubility can be obtained with pulsed CO2 laser irradiation (0.7 J/cm2, 135 mJ/pulse, 74 Hz, 100 μs) without any surface photomodification and a less than 2°C temperature increase at a 3-mm depth from the surface.  相似文献   

19.
Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O-H stretch) and 3.40 (C-H) μm light at macropulse fluences of 7.8 and 6.7 J/cm2, respectively. Under these conditions, a 0.5-μm thick film can be grown in less than 5 min. Film structure was determined from infrared absorbance measurements and gel permeation chromatography (GPC). While the infrared absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed. Received: 22 August 2001 / Accepted: 23 August 2001 / Published online: 17 October 2001  相似文献   

20.
Nd,Cr:Gd3Sc2Ga3O12 (GSGG) thin films have been produced for the first time. They were grown on Si(001) substrates at 650 °C by pulsed laser ablation at 248 nm of a crystalline Nd,Cr:GSGG target rod. The laser plume was analyzed using time-of-flight quadrupole mass spectroscopy, and consisted of elemental and metal oxide fragments with kinetic energies typically in the range 10 to 40 eV, though extending up to 100 eV. Although films deposited in vacuum using laser fluences of 0.8±0.1 J cm−2 reproduced the Nd,Cr:GSGG bulk stoichiometry, those deposited using fluences above ≈3 J cm−2 resulted in noncongruent material transfer and were deficient in Ga and Cr. Attempts to grow films using synchronized oxygen or oxygen/argon pulses yielded mixed oxide phases. Under optimal growth conditions, the films were heteroepitaxial, with GSGG(001)[100]∥Si(001)[100], and exhibited Volmer–Weber-type growth. Room-temperature emission spectra of the films suggest efficient non-radiative energy transfer between Cr3+ and Nd3+ ions, similar to that of the bulk crystal. Received: 1 October 1999 / Accepted: 15 October 1999 / Published online: 23 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号