首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
GaN has been grown using Si/N treatment growth by MOVPE on sapphire (0001) in a home-made vertical reactor. The growth was monitored by in situ laser reflectometry. The morphological, electrical and optical properties of GaN are investigated at all the growth stages. To this aim, the growth was interrupted at different stages. The obtained samples are ex situ characterized by scanning electron microscopy (SEM), room temperature Van der Pauw–Hall electrical transport and low temperature (13 K) photoluminescence (PL) measurements. The SEM images show clearly the coalescence process. A smooth surface is obtained for a fully coalesced layer. During the coalescence process, the electron concentration (n) and mobility (μ) vary from 2×1019 cm−3 to 2×1017 cm−3 and 12 cm2/V s–440 cm2/V s, respectively. The PL maxima shift to higher energy and the FWHM decreases to about 4 meV. A correlation between PL spectra and Hall effect measurements is made. We show that the FWHM follows a n2/3 power law for n above 1018 cm−3.  相似文献   

2.
The bulk dense Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 pyroelectric ceramics have been successfully prepared by the conventional solid method. The effect of three phases coexistence in the ceramics is studied. When x = 0.95 and 0.85 in the ceramics, the maximum pyroelectric coefficient peaks appear at 23 °C and 45 °C, and the maximum values are 26.5 × 10−4 C/m2 °C and 25.5 × 10−4 C/m2 °C, respectively. The maximum pyroelectric coefficient appears large while the peaks widths are small. When the two kinds of ceramic powders mixed with the mol ratio of 2:1, the pyroelectric coefficient of the ceramics is above 10.0 × 10−4 C/m2 °C in a broad temperature range from 20 °C to 55 °C. The possible physical mechanism of the temperature broadened phenomenon is briefly discussed.  相似文献   

3.
Zirconium doped zinc oxide thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 400 °C, 450 °C and 500 °C using zinc and zirconium chlorides as precursors. The effect of zirconium dopant and surface roughness on the nonlinear optical properties was investigated using atomic force microscopy (AFM) and third harmonic generation (THG). The best value of susceptibility χ(3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ(3) = 20.49 × 10−12 (esu) of the studied films was found for the 5% doped sample at 450 °C.  相似文献   

4.
Details of the structural and electrical properties of epitaxial DyP/GaAs and DyAs/GaAs is reported. DyP is lattice matched to GaAs, with a room temperature mismatch of less than 0.01%. DyAs, on the other hand, has a mismatch of nearly 2.4%. Both DyP and DyAs have been grown by solid source MBE using custom designed group V thermal cracker cells and group III high-temperature effusion cells. High-quality DyP and DyAs epilayers, as determined by XRD, TEM, and AFM analysis, were obtained for growth temperatures ranging from 500°C to 600°C with growth rates between 0.5 and 0.7 μm/h. The DyP epilayers are n-type with measured electron concentrations of the order of 3×1020 to 4×1020 cm−3, with room temperature mobilities of 250–300 cm2/V s, and with a barrier height of 0.75 eV to GaAs. The DyAs epilayers are also n-type with concentration of 1×1021 to 2×1021 cm−3, with mobilities between 25 and 40 cm2/V s. DyP is stable in air with no apparent oxidation taking place, even after months of ambient exposure to untreated air.  相似文献   

5.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

6.
A pyrochlore-related Ce2Zr2O8−x phase has been prepared in a reduction reoxidation process from Ce0.5Zr0.5O2 powders. Ce2Zr2O8−x, based on a cubic symmetry with a=1.053 nm, decomposes in nitrogen at 800 °C, but remains stable up to 900 °C in air. It shows mixed oxygen ionic and electronic conductivity. The bulk conductivity at 700 °C is 4×10−4 S cm−1 in air and 1×10−2 S cm−1 in nitrogen, and the activation energy is 1.27 eV in air. In nitrogen, the Arrhenius law is not obeyed, and a curved plot was obtained from 400 to 700 °C; then, the conductivity decreased rapidly due to the thermal decomposition of Ce2Zr2O8−x.  相似文献   

7.
m-plane ZnO film was epitaxially deposited on (1 0 0) γ-LiAlO2 by metal-organic chemical vapor deposition at 600 °C with a GaN buffer layer. The epitaxial relationships between ZnO and GaN, GaN and (1 0 0) γ-LiAlO2 were determined by X-ray diffraction Φ-scans. There exhibits very small decrease for the E2 mode shift (0.3 cm−1) of ZnO in the Raman spectrum, which indicates the epitaxial ZnO film was under a slight tensile stress (5.77 × 107 Pa). Unlike the highly strained a-plane ZnO, temperature dependent photoluminescence spectra show that the free A exiton emission was observed with the temperature ≤138 K.  相似文献   

8.
Sputtered Cr/n-GaAs Schottky diodes have been prepared and annealed at 200 and 400 °C. The current–voltage (I–V) characteristics of the as-deposited and annealed diodes have been measured in the temperature range of 60–320 K with steps of 20 K. The effect of thermal annealing on the temperature-dependent I–V characteristics of the diodes has been investigated experimentally. The ideality factor and barrier height (BH) values for 400 °C annealed diode approximately remain unchanged from 120 to 320 K, and those of the as-deposited sample from 160 to 320 K. The departures from ideality at low temperatures have been ascribed to the lateral fluctuations of the BH. The BH values of 0.61 and 0.74 eV for the as-deposited and 400 °C annealed diodes were obtained at room temperature, respectively. A Richardson constant value of 9.83 A cm−2 K−2 for 400 °C annealed Schottky diode, which is in close agreement with the known value of 8.16 A cm−2 K−2 for n-type GaAs. Furthermore, T0 anomaly values of 15.52, 10.68 and 5.35 for the as-deposited and 200 and 400 °C annealed diodes were obtained from the nT versus T plots. Thus, it has been seen that the interface structure and quality improve by the thermal annealing at 400 °C.  相似文献   

9.
Ba2(In1 − xMx)2O5 − y / 2(OH)y‪□1 − y / 2 (y ≤ 2; M = Sc3+ 0 ≤ x < 0.5 and M = Y3+ 0 ≤ x < 0.35) compounds were prepared by reacting Ba2(In1 − xMx)2O5‪ phases with water vapor. This reaction is reversible. Analyses of the hydration process by TG and XRD studies show that the thermal stability of hydrated phases increases when x increases and that the incorporation of water is not a single-phase reaction inducing either a crystal system or space group modification. Fully hydrated (y = 2) and dehydrated (y = 0) samples have been stabilized at room temperature and characterized for all compositions. In wet air, all phases show a proton contribution to the total conductivity at temperatures between 350 and 600 °C. At a given temperature, proton conductivity increases with the substitution ratio and reaches at 350 °C, 5.4 10− 3 S cm− 1 for Ba2(In0.65Sc0.35)2O4.20.2(OH)1.6.  相似文献   

10.
The influence of P ion doping on the photoluminescence (PL) of the system of nanocrystals in SiO2 matrix (SiO2:Si) both without annealing and after annealing at various temperatures (provided before and after additional P implantation) is investigated. The Si and P implantation was carried out with ion energies of 150 keV and doses ΦSi=1017 cm−2 and ΦP=(0.1–300)×1014 cm−2 (current density j3 μAcm−2). The system after Si implantation was formed at 1000°C and 1100°C (2 h). For the case of SiO2:Si system as-implanted by P, the intensity of PL was drastically quenched, but partially retained. As for the step-by-step annealing (at progressively increased temperatures) carried out after P implantation, the sign and degree of doping effect change with annealing temperature. The possible mechanisms of these features are discussed.  相似文献   

11.
The pure rotational spectrum of CH2F2 was recorded in the 20–100 cm−1 spectral range and analyzed to obtain rotation and centrifugal distortion constants. Analysis of the data yielded rotation constants: A = 1.6392173 ± 0.0000015, B = 0.3537342 ± 0.00000033, C = 0.3085387 ± 0.00000027, τaaaa = −(7.64 ± 0.46) × 10−5, τbbbb = −(2.076 ± 0.016) × 10−6, τcccc = −(9.29 ± 0.12) × 10−7, T1 = (4.89 ± 0.20) × 10−6, and T2 = −(1.281 ± 0.016) × 10−6cm−1.  相似文献   

12.
CaREZrNbO7 (RE = La, Nd, Sm, Gd and Y) system changed from fluorite (F)-type to pyrochlore (P)-type structure when the ionic radius ratios, r(Ca2+–RE3+)av/r(Zr4+–Nb5+)av were larger than 1.34. Thus, the La, Nd, and Sm compounds have a cubic P-type structure and the Gd and Y ones have a defect F-type structure. The electrical conductivity was measured using complex-plane impedance analysis over a wide temperature (300–750 °C) and frequency (1 Hz–1 MHz) ranges. The conductivity relaxation phenomenon was observed in these compounds and the relaxation frequencies were found to show Arrhenius-type behavior and activation energies were in good agreement with those obtained from high temperature conductivity plots. These results support the idea that the relaxation process and the conductivity have the same origin. The ionic conductivity of CaREZrNbO7 (RE = La, Nd, Sm, Gd and Y) system showed the maximum at the phase boundary between the F-type and P-type phases. On the other hand, the activation energy for the conduction decreased in the F-type phase and increased in the P-type phase with increasing ionic radius ratio. Among the prepared compounds, CaGdZrNbO7 showed the highest ionic conductivity of 9.47 × 10− 3 S/cm at 750 °C which was about twice as high as that observed in Gd2Zr2O7 (4.2 × 10− 3 S/cm at 800 °C). The grain morphology observation by scanning electron microscope (SEM) showed well-sintered grains. AC impedance measurements in various atmospheres further indicated that they are predominantly oxide ion conductors at elevated temperatures (> 700 °C).  相似文献   

13.
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively.  相似文献   

14.
In situ atomic force microscopy (AFM) was used to study the growth behaviour of anglesite (PbSO4) monolayers on the celestite (0 0 1) face. Growth was promoted by exposing the celestite cleavage surfaces to aqueous solutions that were supersaturated with respect to anglesite. The solution supersaturation, βang, was varied from 1.05 to 3.09 (where βang = a(Pb2+) · a(SO42−)/Ksp,ang). In this range of supersaturation, two single anglesite monolayers (3.5 Å in height each) from pre-existent celestite steps were grown. However, for solution supersaturation βang < 1.89 ± 0.06, subsequent multilayer growth is strongly inhibited. AFM observations indicate that the inhibition of a continuous layer-by-layer growth of anglesite on the celestite (0 0 1) face is due to the in-plane strain generated by the slight difference between the anglesite and celestite lattice parameters (i.e. the linear misfits are lower than 1.1%). The minimum supersaturation required to overcome the energy barrier for multilayer growth gave an estimate of the in-plane strain energy: 11.4 ± 0.6 mJ/m2. Once this energy barrier is overcome, a multilayer Frank–Van Der Merwe epitaxial growth was observed.  相似文献   

15.
Amorphous, nanocrystalline, and bulk AlO(OH) · xH2O crystals have six fundamental modes (FM) of vibration in a nonlinear AlO(OH) molecular structure. Most of them appear in groups of four IR and Raman bands. Their positions and relative intensities differ significantly in three specimens. The nanocrystals (monoclinic structure with z=8 molecules per unit cell) have four OH stretching bands at values enhanced by up to 360 cm−1 at 3120, 3450, 3560 cm−1 in comparison to those in bulk crystals or amorphous specimens. The first two bands are broad, bandwidth Δν1/2200 to 350 cm−1, while the other two are sharp, Δν1/290 cm−1. The sharp bands shift to 3525 and 3595 cm−1 after heating the sample at 100°C. They no longer appear after heating at 300 or 500°C for 2 h (the specimen decomposes to Al2O3), leaving behind only two bands at 3100 and 3400 cm−1. A Δν1/2 value of 500 cm−1 appears in the 3400 cm−1 in a delocalized distribution of H atoms. Two bands also occur at 3098 and 3300 cm−1 in bulk crystals (orthorhombic structure with z=4) or at 2990 and 3515 cm−1 in an amorphous sample. More than one bands appear in a FM vibration in occurrence of sample in more than one conformers. The amorphous sample has approximately the same conformer structure as the bulk crystals. An amorphous surface structure exists in nanocrystals with a group of three bands at 1420, 1510 and 1635 cm−1 in an interconnected network structure. It encapsulates the nanocrystals in an amorphous shell. Its volume fraction, 33% estimated from the integrated intensity in three bands, determines 2.2 nm thickness in the shell in spherical shape of nanocrystals in 35 nm diameter.  相似文献   

16.
We have investigated the temperature-dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x≈0.1–0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. All the layers doped with manganese exhibited n-type conductivity with Curie temperature over 350 K. The efficient PL are peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. It was found that the blue band at 3.29 eV is mostly associated with the formation complexes between donors (e.g., N vacancy) and Mn acceptors, which results in forming donor levels at 0.23 eV below the conduction band edge. The yellow band is attributed to intrinsic gallium defects. The broad band at 1.86 eV is attributed to inner 5D state transition (T2 to E) of Mn ions.  相似文献   

17.
The structural properties of a 10 μm thick In-face InN film, grown on Al2O3 (0001) by radio-frequency plasma-assisted molecular beam epitaxy, were investigated by transmission electron microscopy and high resolution x-ray diffraction. Electron microscopy revealed the presence of threading dislocations of edge, screw and mixed type, and the absence of planar defects. The dislocation density near the InN/sapphire interface was 1.55×1010 cm−2, 4.82×108 cm−2 and 1.69×109 cm−2 for the edge, screw and mixed dislocation types, respectively. Towards the free surface of InN, the density of edge and mixed type dislocations decreased to 4.35×109 cm−2 and 1.20×109 cm−2, respectively, while the density of screw dislocations remained constant. Using x-ray diffraction, dislocations with screw component were found to be 1.2×109 cm−2, in good agreement with the electron microscopy results. Comparing electron microscopy results with x-ray diffraction ones, it is suggested that pure edge dislocations are neither completely randomly distributed nor completely piled up in grain boundaries within the InN film.  相似文献   

18.
We report structural and optical properties of In0.5Ga0.5As/GaAs quantum dots (QDs) in a 100 Å-thick In0.1Ga0.9As well grown by repeated depositions of InAs/GaAs short-period superlattices with atomic force microscope, transmission electron microscope (TEM) and photoluminescence (PL) measurement. The QDs in an InGaAs well grown at 510 °C were studied as a function of n repeated deposition of 1 monolayer thick InAs and 1 monolayer thick GaAs for n=5–10. The heights, widths and densities of dots are in the range of 6–22.0 nm, 40–85 nm, and 1.6–1.1×1010/cm2, respectively, as n changes from 5 to 10 with strong alignment along [1 −1 0] direction. Flat and pan-cake-like shape of the QDs in a well is found in TEM images. The bottoms of the QDs are located lower than the center of the InGaAs well. This reveals that there was intermixing—interdiffusion—of group III materials between the InGaAs QD and the InGaAs well during growth. All reported dots show strong 300 K-PL spectrum, and 1.276 μm (FWHM: 32.3 meV) of 300 K-PL peak was obtained in case of 7 periods of the QDs in a well, which is useful for the application to optical communications.  相似文献   

19.
We have studied the effects of thermal annealing on the electrical properties of InAs/InP self-assembled quantum dots (QDs) using deep level transient spectroscopy (DLTS). It was found from the DLTS measurements that the activation energy of the QD signal varied from 0.47 to 0.60 eV and the emission cross section changed from 1.01×10−15 to 9.63×10−14 cm2 when the annealing temperature increased up to 700 °C. As a result of the thermal annealing process at the temperature ranging from 500 to 600 °C, the higher activation energy and the larger emission cross section of the QD related signal were observed for the annealed samples compared to those for the as-grown sample. On the basis of the capture barrier height for the QDs structure being lowered from 0.24 to 0.06 eV at the annealing temperature of 700 °C, thermal damage was considered as the reason. The appropriate annealing process can provide a clue for the engineering of the energy levels in the self-assembled QD structures.  相似文献   

20.
Several elementary reactions of formyl radical of combustion importance were studied using pulsed laser photolysis coupled to transient UV–Vis absorption spectroscopy: HCO → H + CO (1), HCO + HCO → products (2), and HCO + CH3 → products (3). One-pass UV absorption, multi-pass UV absorption as well as cavity ring-down spectroscopy in the red spectral region were used to monitor temporal profiles of HCO radical. Reaction (1) was studied over the buffer gas (He) pressure range 0.8–100 bar and the temperature range 498–769 K. Reactions (2a), (2b), (2c), (3a) and (3b) as well as the UV absorption spectrum of HCO, were studied at 298 and 588 K, and the buffer gas (He) pressure of 1 bar. Pulsed laser photolysis (308, 320, and 193 nm) of acetaldehyde, propionaldehyde, and acetone was used to prepare mixtures of free radicals. The second-order rate constant of reaction (1) obtained from the data at 1 bar is: k1(He) = (0.8 ± 0.4) × 10−10exp(−(66.0 ± 3.4) kJ mol−1/RT) cm3 molecule−1 s−1. The HCO dissociation rate constants measured in this work are lower than those reported in the previous direct work. The difference is a factor of 2.2 at the highest temperature of the experiments and a factor of 3.5 at the low end. The experimental data indicate pressure dependence of the rate constant of dissociation of formyl radical 1, which was attributed to the early pressure fall-off expected based on the theory of isolated resonances. The UV absorption spectrum of HCO was revised. The maximum absorption cross-section of HCO is (7.3 ± 1.2) × 10−18 cm2 molecule−1 at 230 nm (temperature independent within the experimental error). The measured rate constants for reactions (2a), (2b), (2c), (3a) and (3b) are: k2 = (3.6 ± 0.8) × 10−11 cm3 molecule−1 s−1 (298 K); k3 = (9.3 ± 2.3) × 10−11 cm3 molecule−1 s−1(298 and 588 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号