首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Mussel adhesive proteins have received considerable attention due to their ability to bind strongly to many surfaces under water. Key structural features of these proteins include a large number of 3,4-dihydroxyphenyl-L-ALANIN (DOPA) and positively charged lysine residues. We elucidate the effects of solution pH, in the pH range 3-9, on adsorption kinetics, adsorbed amount, and layer structure on silicon oxynitride by employing Dual Polarization Interferometry. As a comparison, the cationic globular protein lysozyme was also investigated. The zeta-potential of the silicon oxynitride substrate was determined as a function of pH, and the isoelectric point was found to be below pH 3. Mefp-1 is positively charged at pH<10, and thus, the protein is expected to have an electrostatic attraction for the surface at all pH values investigated. The adsorbed amount and the initial adsorption rate were found to increase with solution pH, and no significant desorption occurred due to rinsing with pure water. The layer thickness after rinsing was 3-4 nm, except at pH 3, where the adsorption was limited to a small amount. Covalent cross-linking of the Mefp-1 layer with NaIO(4) resulted in a small but significant compaction and increase in refractive index of the layer. The results are discussed in terms of the role of DOPA and electrostatic interactions for the adsorption of Mefp-1 to silicon oxynitride.  相似文献   

2.
The amounts of negatively charged bovine serum albumin and positively charged lysozyme adsorbed on alumina, silica, titania, and zirconia particles (diameters 73 to 271 nm) in aqueous suspensions are measured. The adsorbed proteins change the zeta potentials and the isoelectric points (IEP) of the oxide particles. The added to adsorbed protein ratios at pH 7.5 are compared with the protein treated particle zeta potentials. It is found that the amounts of adsorbed proteins on the alumina, silica, and titania (but not on the zirconia) particle surfaces are highly correlated with the zeta potential. For the slightly less hydrophilic zirconia particles high amounts of protein adsorption are observed even under repulsive electrostatic conditions. One reason could be that the hydrophobic effect plays a more important role for zirconia than electrostatic interaction.  相似文献   

3.
An orthogonal, charge-density-versus-net-charge, surface-chemical gradient, composed of ternary mixed self-assembled monolayers, has been prepared from three hydrophilic components: positively chargeable amine-terminated, negatively chargeable carboxylic-acid-terminated, and hydroxyl-terminated alkanethiols, with the latter bearing a slight negative charge in electrolytes. The chemical composition and its distribution have been monitored by X-ray photoelectron spectroscopy. The adsorption behavior of negatively charged SiO(2) nanoparticles and positively charged amine-modified SiO(2) nanoparticles has been studied. Additionally, negatively charged proteins (bovine serum albumin and fibrinogen) and positively charged proteins (lysozyme) were adsorbed on the gradients. Negatively charged nanoparticles and proteins adsorb mainly in the positively charged region and vice versa, illustrating that the adsorption behavior is mainly influenced by electrostatic interactions, and showing the potential of the gradient for sorting applications. Despite literature reports to the contrary, no area was found that was completely resistant to protein adsorption.  相似文献   

4.
Adsorption of protein from saliva on hydroxyapatite was compared with adsorption of several typical proteins with different electric charges, i.e. lysozyme, human serum albumin, β-lactoglobulin and ovalbumin. Adsorbed amounts of these proteins were determined and electrophoretic mobilities of protein-covered hydroxyapatite particles were measured, at different values for the adsorbed mass and, therefore, at various degrees of surface coverage. Also, adsorption kinetics were investigated by streaming potential measurements of a hydroxyapatite surface in contact with a protein solution, allowing monitoring of changes in the zeta-potential of the protein-covered hydroxyapatite surface in real time. The adsorbed amounts show that, as compared to most of the other proteins, the saliva proteins have remarkably low adsorption affinity. The measured values for the electrophoretic mobilities indicate that the positively charged proteins in the saliva mixture preferentially adsorb onto the negatively charged hydroxyapatite surface; this is most pronounced at low protein concentration in solution (i.e. at low coverage of the surface by the protein). Preferential uptake of the positively charged saliva proteins during the initial stages of the adsorption process is also concluded from the results of the kinetics experiments. Preferential adsorption of positive proteins is somewhat suppressed by the presence of Ca2+ ions in the medium. The results suggest that an acquired pellicle on a tooth in an oral environment contains a significant fraction of positively charged proteins. The positively charged proteins in the pellicle reduce the zeta-potential at the tooth surface to low values; consequently, electrostatic forces are expected to play only a minor role in the interaction with other components (e.g. bacterial cells).  相似文献   

5.
研究蛋白质在固相表面的静电吸附特性,进而控制蛋白质在修饰表面的静电吸附尤为重要,表面等离子体子共振可以检测金属表面吸附物质厚度和折射率的变化^[1]。这种技术已在研究生物分子相互作用^[2]和考察自组装单层的形成^[3]及蛋白质在固体表面吸附行为^[9-11]等方面得到广泛的应用。对蛋白质在固体表面吸附行为的研究多为考察不同的蛋白质在不同的修饰表面的吸附行为。然而,对蛋白质在修饰表面静电吸附的本质影响因素的研究却少有报道^[4]。本文使用表面等离子体子共振技术实时研究了蛋白质在甲羧基化葡聚糖修饰表面的静电吸附与溶液pH值及离子强度的依赖关系。  相似文献   

6.
The adsorption of bovine serum albumin (BSA) and lysozyme (LSZ) to oleyl phosphate(OP)-grafted calcium hydroxyapatite (OP-CaHAP) with different degrees of hydrophobicity, ranging the number of surface oleyl group per unit nm2 (nO) from 0 to 2.60, was investigated. The pronounced effects of the hydrophobic moiety of adsorbent on protein adsorption were observed. The saturated amount of adsorbed BSA (ns) was increased up to nO = 0.6 by an enlargement of hydrophobic interaction between hydrophobic CaHAP particle and proteins. However, ns decreased at nO >/= 1.3 by increasing the electrostatic repulsive force between negatively charged BSA and OP-CaHAP particles. On the other hand, the ns value of LSZ was continuously increased up to nO = 2.0 and saturated by increasing either the hydrophobic interaction or the electrostatic attraction of positively charged LSZ and negatively charged OP-grafted CaHAPs. The BSA adsorption experiment revealed that the effect of positively charged adsorption sites on the exposed ac or bc crystal faces (C-sites) of the CaHAPs is screened by the OP-groups grafted on their particle surfaces. Copyright 1999 Academic Press.  相似文献   

7.
The adsorption of the iron storage protein ferritin was studied by liquid tapping mode atomic force microscopy in order to obtain molecular resolution in the adsorbed layer within the aqueous environment in which the adsorption was carried out. The surface coverage and the structure of the adsorbed layer were investigated as functions of ionic strength and pH on two different charged surfaces, namely chemically modified glass slides and mixed surfactant films at the air-water interface, which were transferred to graphite substrates after adsorption. Surface coverage trends with both ionic strength and pH indicate the dominance of electrostatic effects, with the balance shifting between intermolecular repulsion and protein-surface attraction. The resulting behavior is more complex than that seen for larger colloidal particles, which appear to follow a modified random sequential adsorption model monotonically. The structure of the adsorbed layers at the solid surfaces is random, but some indication of long-range order is apparent at fluid interfaces, presumably due to the higher protein mobility at the fluid interface. Copyright 2000 Academic Press.  相似文献   

8.
Surfaces coated with poly(ethylene oxide) containing nonionic polymers are of interest in medical applications due to, among other things, the low adsorption of proteins on such surfaces. In this paper we have studied the interfacial properties of surfaces coated with PEO by measuring the forces acting between two such surfaces in water and across a protein solution as well as between one such surface and a surface carrying adsorbed proteins. One type of surface coating was a graft copolymer of poly(ethylene imine) and poly(ethylene oxide) where the cationic poly(ethylene imine) group anchored the polymer to negatively charged mica surfaces. Three different ways to prepare this coating was used and compared. It was found that this coating was not stable in the presence of lysozyme, a small positively charged protein, when the PEO graft density was low. The other type of coating was obtained by adsorbing ethyl(hydroxyethyl)-cellulose onto hydrophobised mica surfaces. The driving force for adsorption is in this case the hydrophobic interaction between nonpolar segments of the polymer and the surface. The EHEC coating was stable in the presence of lysozyme and the interactions between adsorbed layers of lysozyme and EHEC coated surfaces are purely repulsive due to long-range steric forces.  相似文献   

9.
This study concerns the design of protein-resistant polymer adsorbed layers for the control of surface binding of biospecific recognition entities. Polymer surface layers were prepared using the adsorption of poly(allylamine hydrochloride) (PAH), poly(l-lysine) (PL), and branched and linear polyethyleneimine (PEI) and further modified by the covalent attachment of biotin for specific avidin attachment. The adsorption of PAH, PL, and PEI on silicon substrates was studied as a function of pH and ionic strength using ellipsometry. Average dry layer thicknesses of approximately 10, approximately 5, approximately 9, and approximately 3 A (+/-1 A) were obtained when polymer adsorption occurred from solutions at pH 9.5 that contained 0.5 M NaCl for PAH, PL, branched PEI, and linear PEI, respectively. These polymers showed significant differences in their efficiency to suppress nonspecific avidin adsorption. At low ionic strength, avidin adsorption occurred on all polymer-coated surfaces at basic pH values, despite the same positive electrostatic charge for protein globules and the surface. Though the net electrostatic repulsion between avidin molecules and branched PEI was efficiently screened in a protein solution of pH 7 and 0.15 M NaCl, branched-PEI coatings of high molecular weight were unique in their ability to provide avidin-resistant surfaces as a result of steric hindrance from the branched architecture of adsorbed polymer chains. All polymers studied were effective in suppressing avidin adsorption at pH 3 as a result of protonation of the avidin surface functional groups at this pH. Branched-PEI-coated surfaces were also effective for the suppression of smaller positively charged proteins such as lysozyme and ribonuclease A at pH 7 and 0.15 M NaCl. They were also resistant to the adsorption of negatively charged proteins such as BSA and fibrinogen at pH 7 and 0.75 M NaCl. Furthermore, by using PEI-modified protein-repellent surfaces, selective binding of avidin was achieved to surface-bound silver nanoparticles, which should provide a promising application for the label-free detection of biological species using surface-enhanced Raman scattering (SERS).  相似文献   

10.
In this work we study by differential scanning calorimetry (DSC) the lateral phase separation induced by a globular protein (lysozyme) on vesicles built-up by charged (phosphatidic acid) and neutral (phosphatidylcholine) lipids.The adsorption of the positively charged protein onto the negative vesicle surface induces the formation of micro-domains richer in the charged lipid component. This phenomenon is revealed as a splitting of the excess heat capacity peak associated to the melting of the lipid hydrocarbon chains.Also, the peak associated to the protein denaturation is shifted, suggesting the presence of adsorbed proteins onto the vesicle surface. The surface electrostatic potentials, both of proteins and vesicles, have been modulated by pH and ionic strength variations, showing a deep influence of the electric charges in modifying protein adsorption, rate of denaturation (related to unfolding enthalpy variation), and lipid micro-domain formation.Some of the present results have been rationalized on the basis of a theoretical model recently developed by the authors.  相似文献   

11.
The adsorption affinity of bovine serum albumin (BSA) and lysozyme (LSZ) to calcium hydroxyapatite (CaHAP) was evaluated by desorption and two step adsorption methods. These experiments were carried out at 15°C in a 1×10−4 mol dm−3 KCl solution of pH 6.0. BSA molecules were scarcely desorbed, exhibiting an irreversible adsorption of BSA, though LSZ slightly desorbed. This result supports our previous findings that LSZ adsorbs weakly onto phosphate ions exposed on ac or bc faces of CaHAP while BSA adsorbs strongly onto positively charged sites on ac or bc faces of CaHAP. The amount of adsorbed LSZ was markedly increased by the pre-adsorption of BSA, where LSZ was adsorbed onto BSA-covered CaHAP. On the other hand, the amount of adsorbed BSA was not changed by the pre-adsorption of LSZ. In both pre-adsorption systems it was confirmed by an HPLC method that no protein molecule pre-adsorbed was desorbed after the post-adsorption procedure. Therefore, it was interpreted that the enhancement of adsorption of positively charged LSZ is induced by an electrostatic attractive force through pre-adsorption of negatively charged BSA molecules with a high coverage. However, since the coverage of LSZ onto CaHAP is considerably low, no stimulation of BSA adsorption occurred on the LSZ-covered surface. The formation of double protein adsorbed layers consisting of pre- and post-adsorbed proteins was proposed.  相似文献   

12.
Hen egg white lysozyme was adsorbed onto clean borosilicate glass and n-pentyl silane-treated glass surfaces. Both modified (reductively methylated) and native lysozyme were studied. Variable angle X-ray photoelectron spectroscopy (VA-XPS) suggested differences in the nature of the adsorbed layer depending on substrate properties, as well as on degree of methylation of the protein. Adsorbed film thickness (as measured in the dehydrated state by XPS) ranged from 14 Å on hydrophilic glass to 25 Å on the hydrophobic surface. Degree of surface coverage ranged from 45% on the hydrophobic to 69% on the hydrophilic surface. The results suggest that lysozyme unfolds to a greater extent and covers more surface on the hydrophilic glass, possibly due to strong electrostatic interactions at the pH 7.4 conditions used in the study. An analysis of the surface structure of native hen lysozyme by molecular graphics has also been performed, suggesting that adsorption on hydrophobic surfaces should occur via the hydrophobic patch opposite the enzyme active site cleft. A comparison with human lysozyme has also been made using total internal reflection fluorescence (TIRF) spectroscopy to measure protein adsorption on model surfaces. The two proteins have significantly different interfacial properties.  相似文献   

13.
An electrostatic self‐assembly (ESA) multilayer film of a diazo resin (DR) was fabricated by direct surface charge reversal. DR is first adsorbed onto the substrate via electrostatic interaction, and in the chemical activation step, the sign of the surface charge is directly reversed by converting the positively charged diazonium ion to the negatively charged diazo sulfonate ion under mild conditions. By repeating adsorption and chemical activation step, the film grows regularly layer by layer.  相似文献   

14.
X-ray photoelectron spectroscopy (XPS) was employed to quantify adsorption of polyelectrolytes from aqueous solutions of low ionic strength onto mica, glass, and silica. Silica surfaces were conditioned in base or in acid media as last pre-treatment step (silica-base last or silica-acid last, respectively). Consistency in the determined adsorbed amount, Γ, was obtained independent of the choice of XPS mode and with the two quantification approaches used in the data evaluation. Under the same adsorption conditions, the adsorbed amount, Γ, varied as Γmica > Γsilica-base last ≈ Γglass > Γsilica-acid last. In addition, the adsorbed amount increased with decreasing polyelectrolyte charge density (100% to 1% of segments being charged) for all substrates. Large adsorbed amount was measured for low-charge density polyelectrolytes, but the number of charged segments per square nanometer was low due to steric repulsion between polyelectrolyte chains that limited the adsorption. The adsorbed amount of highly charged polyelectrolytes was controlled by electrostatic interactions and thus limited to that needed to neutralize the substrate surface charge density. For silica, the adsorbed amount depended on the cleaning method, suggesting that this process influenced surface concentration and fraction of different silanol groups. Our results demonstrate that for silica, a higher density and/or more acidic silanol groups are formed using base, rather than acid, treatment in the last step.  相似文献   

15.
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.  相似文献   

16.
This work investigates the effects of ionic strength and protein characteristics on adsorption and transport of lysozyme, BSA, and IgG in agarose-based cation exchangers with short ligand chemistry and with charged dextran grafts. In all cases, the adsorption equilibrium capacity decreased with increasing salt. However, the adsorption kinetics was strongly influenced by the adsorbent structure and protein characteristics. For the smaller and positively charged lysozyme, the effective pore diffusivity was only weakly dependent on salt for the dextran-free media, but declined sharply with salt for the dextran-grafted materials. For this protein, the dextran grafts enhanced the adsorption kinetics at low salt, but the enhancement vanished at higher salt concentrations. For BSA, which was near its isoelectric point for the experimental conditions studied, the effective diffusivity was low for all materials and almost independent of salt. Finally, for the larger and positively charged IgG, the effective diffusivity varied with salt, reaching an apparent maximum at intermediate concentrations for both dextran-free and dextran-grafted media with the kinetics substantially enhanced by the dextran grafts for these conditions. Microscopic observations of the particles during protein adsorption at low ionic strengths showed transient patterns characterized by sharp adsorption fronts for all materials. A theory taking into account surface or adsorbed phase diffusion with electrostatic coupling of diffusion fluxes is introduced to explain the mechanism for the enhanced adsorption kinetics observed for the positively charged proteins.  相似文献   

17.
The reversible switching of uptake and release of the proteins lysozyme (LYZ, IEP = 11.1) and human serum albumin (HSA, IEP = 4.8) at the surface attached polyelectrolyte multilayer (PEM) consisting of poly(ethylene-imine) (PEI) and poly(acrylic acid) (PAC) is shown. Protein adsorption could be switched by pH setting due to electrostatic interaction. Adsorption of positively charged LYZ at PEM-6 took place at pH = 7.3, where the outermost PAC layer was negatively charged. Complete desorption was obtained at pH = 4, where the outermost PAC layer was neutral. Additionally the charge state of the last adsorbed PAC layer in dependence of the pH of the medium could be determined in the ATR-FTIR difference spectra by the ν(COO) and ν(C=O) band due to carboxylate and carboxylic acid groups. Adsorption of negatively charged HSA at PEM-7 was achieved at pH = 7.3, where the outermost PEI layer was positively charged. Part desorption was obtained at pH = 10, where the outermost PEI layer was neutral. PEM of PEI/PAC may be used for the development of bioactive and bionert materials and protein sensors.  相似文献   

18.
The adsorption and assembly of B18 peptide on various solid surfaces were studied by reflectometry techniques and atomic force microscopy. B18 is the minimal membrane binding and fusogenic motif of the sea urchin protein bindin, which mediates the fertilization process. Silicon substrates were modified to obtain hydrophilic charged surfaces (oxide layer and polyelectrolyte multilayers) and hydrophobic surfaces (octadecyltrichlorosilane). B18 does not adsorb on hydrophilic positively charged surfaces, which was attributed to electrostatic repulsion since the peptide is positively charged. In contrast, the peptide irreversibly adsorbs on negatively charged hydrophilic as well as on hydrophobic surfaces. B18 showed higher affinity for hydrophobic surfaces than for hydrophilic negatively charged surfaces, which must be due to the presence of hydrophobic side chains at both ends of the molecule. Atomic force microscopy provided the indication that lateral diffusion on the surface affects the adsorption process of B18 on hydrophobic surfaces. The adsorption of the peptide on negatively charged surfaces was characterized by the formation of globular clusters.  相似文献   

19.
Site-selective adsorption of protein molecules was found on sapphire surfaces that exhibit a phase separation into two domains: weakly charged hydrophobic domain and negatively charged hydrophilic one. Ferritin and bovine serum albumin molecules, which are negatively charged in a buffer solution, are adsorbed to the hydrophobic domains. Avidin molecules, which are positively charged, are adsorbed to the other domain. Fibrinogen molecules, which consist of both negative and positive modules, are adsorbed to the whole sapphire surface. Hemoglobin molecules, whose net charge is almost zero, are also adsorbed to the whole surfaces. These results indicate that electrostatic double layer interaction is the primary origin of the observed selectivity. Dependence of protein adsorption or desorption behaviors on the pH value can also be interpreted by the proposed model.  相似文献   

20.
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO(2) wafers was achieved under pH 11.6, 50mM CaCl(2), and at 70 degrees C. XG-ALG films presented mean thickness of (16+/-2)nm and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAlt adsorbed irreversibly onto XG-ALG forming homogenous monolayers approximately (4+/-1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号