首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments.  相似文献   

2.
3.
The sub-Doppler laser induced fluorescence spectra of numerous branch features in the B 2Sigma+ -X 2Sigma+(0,0) band of calcium monodeuteride were recorded field-free and in the presence of a static electric field of up to 7 kV/cm. The field-free spectra were analyzed to produce an improved set of fine structure parameters for the B 2Sigma+(v=0) state. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments of 2.57(3) and 2.51(3) D for B 2Sigma+(v=0) and X 2Sigma+(v=0) states, respectively. The permanent electric dipole moment for the X 2Sigma+(v=0) state of CaH is estimated to be 2.53(3) D.  相似文献   

4.
Ab initio calculations of low-lying electronic states of CrH are presented, including potential energies, dipole and transition dipole moment (TDM) functions, and radiative lifetimes for X (6)Sigma(+), A (6)Sigma(+), 3 (6)Sigma(+), 1 (6)Pi, 2 (6)Pi, 3 (6)Pi, and (6)Delta. Calculation of dynamic correlation effects was performed using the multistate complete active space second-order perturbation method, based on state-averaged complete active space self-consistent-field reference wave functions obtained with seven active electrons in an active space of 16 molecular orbitals. A relativistic atomic natural orbital-type basis set from the MOLCAS library was used for Cr. Good agreement is found between the current calculations and experiment for the lowest two (6)Sigma(+) states, the only states for which spectroscopic data are available. Potential curves for the 3 (6)Sigma(+) and 2 (6)Pi states are complicated by avoided crossings with higher states of the same symmetry, thus resulting in double-well structures for these two states. The measured bandhead T(0)=27 181 cm(-1), previously assigned to a (6)Pi<--X (6)Sigma(+) transition, is close to our value of T(0)=28 434 cm(-1) for the 2 (6)Pi state. We tentatively assign the ultraviolet band found experimentally at 30 386 cm(-1) to the 3 (6)Pi<--X (6)Sigma(+) transition for which the computed value is 29 660 cm(-1). The A (6)Sigma(+)<--X (6)Sigma(+) TDM and A (6)Sigma(+) lifetimes are found to be in reasonable agreement with previous calculations.  相似文献   

5.
The optical Stark effect in the (R)R(13)(0.5) branch feature of the [18.1] (2)Pi(12)-X (4)Sigma(12) (-) (v('),v(")=0) band of rhodium monosulfide (RhS) has been recorded and analyzed to determine the permanent electric dipole moment mu(e) of 3.40(2) D for the ground X (4)Sigma(12) (-) (v=0) state and an upper limit of 1.5 D for the [18.1] (2)Pi(12) state. Molecular orbital correlation diagrams are used to interpret the relative values of mu(e) for RhN, RhO, and RhS. The (103)Rh(I=12) magnetic hyperfine interaction in the X (4)Sigma(12) (-) and [18.1] (2)Pi(12) states is analyzed.  相似文献   

6.
A number of low-N lines of the X (6)Sigma(+)<--A (6)Sigma(+)(0,0) band of chromium monodeuteride, CrD, have been recorded at near the natural linewidth limit by high resolution laser excitation spectroscopy of a supersonic molecular beam sample. The shifts and splitting of these lines caused by a static electric field have been analyzed to give the permanent electric dipole moments of the X (6)Sigma(+)(upsilon=0) and A (6)Sigma(+)(upsilon=0) states as 3.510(33) and 1.153(3) D, respectively. The dipole moment of the A (6)Sigma(+)(upsilon=0) state can be measured with higher precision because of some interesting near degeneracies in its level structure. The trends in the observed dipole moments for the first-row transition metal monohydrides are rationalized and compared with theoretical predictions.  相似文献   

7.
Potential energy curves for the X (1)Sigma(g) (+) ground state and Omega=0(u) (+), 1(u) valence states and dipole moments for the 0(u) (+), 1(u)-X transitions are obtained in an ab initio configuration interaction study of Cl(2) including spin-orbit coupling. In contrast to common assumptions, it is found that the B (3)Pi(0(+)u)-X transition moment strongly depends on internuclear distance, which has an important influence on the Cl(2) photodissociation. Computed energy curves and transition moments are employed to calculate the A, B, C<--X extinction coefficients, the total spectrum for the first absorption band, and the Cl(*)((2)P(1/2))/Cl((2)P(3/2)) branching ratio as a function of excitation wavelength. The calculated data are shown to be in good agreement with available experimental results.  相似文献   

8.
The Renner-Teller effect in C(2)H(2)(+)(X(2)Pi(u)) has been studied by using zero kinetic energy (ZEKE) photoelectron spectroscopy and coherent extreme ultraviolet (XUV) radiation. The rotationally resolved vibronic spectra have been recorded for energies up to 2000 cm(-1) above the ground vibrational state. The C triple bond C symmetric stretching (upsilon(2)), the CCH trans bending (upsilon(4)), and the CCH cis bending (upsilon(5)) vibrational excitations have been observed. The assigned vibronic bands are 4(1)(1)(kappa(2)Sigma(u)(+))(hot band), 4(1)(0)(mu/kappa(2)Sigma (u)(-/+)), 5(1)(0)(mu/kappa(2)Sigma (g)(+/-)), and 4(2)(0)(mu(2)Pi(u)), 4(2)(0)(kappa(2)Pi(u)), 4(1)(0)5(1)(0) (mu(2)Pi(g)), 0(0)(0)(X(2)Pi(u)), and 2(1)(0)(X(2)Pi(u)). The Renner-Teller parameters, the harmonic frequencies, the spin-orbit coupling constants, and the rotational constants for the corresponding vibronic bands have been determined by fitting the spectra with energy eigenvalues from the Hamiltonian that considers simultaneously Renner-Teller coupling, vibrational energies, rotational energies, and spin-orbit coupling interaction.  相似文献   

9.
The geometries, the harmonic vibrational frequencies, and the Renner-Teller parameter have been reported for the NCO(+)(X (3)Sigma(-)), NCO(X (2)Pi,A (2)Sigma(+),B (2)Pi,2 (2)Sigma(+)), NCO(-)(X (1)Sigma(+)), CNO(+)(X), CNO(X (2)Pi,A (2)Sigma(+),B (2)Pi,2 (2)Sigma(+)), and CNO(-)(X (1)Sigma(+)) systems at the full valence-complete active space self-consistent-field (fv-CASSCF) level of theory. The (2)Pi electronic states of the NCO and CNO radicals have two distinct real vibrational frequencies for the bending modes and these states are subject to the type A Renner-Teller effect. The total energy of CNO(+) without zero point energy correction of the linear geometry is approximately 31 cm(-1) higher than the bent geometry at the fv-CASSCF level and the inversion barrier vanishes after the zero point energy correction; therefore, the ground state of the CNO(+) may possess a quasilinear geometry. The spin-orbit coupling constants estimated using atomic mean field Hamiltonian at the fv-CASSCF level of theory are in better agreement with the experimental values. The excitation energies, the electron affinity, and the ionization potential have been computed at the complete active space second order perturbation theory (CASPT2) and the multireference singles and doubles configuration (MRSD-CI) levels of theory. The computed values of the electric hyperfine coupling constants for the (14)N atom in the ground state of the NCO radical agree well with the experimental data. The magnetic hyperfine coupling constants (HFCC's) have been estimated employing the configuration selected MRSD-CI and the multireference singles configuration interaction (MRS-CI) methods using iterative natural orbitals (ino) as one particle basis. Sufficiently accurate value of the isotropic contribution to the HFCC's can be obtained using an MRS-CI-ino procedure.  相似文献   

10.
Potential energy curves for the 28 lowest LambdaSigma states and 49 Omega states of RbCs are obtained from large-scale multireference configuration interaction calculations using both spin-averaged and two-component spin-orbit energy-consistent effective core potentials. Spectroscopic properties of all states are compared across available data in literature to date. Variations of the permanent dipole moments on the internuclear separation (R) for the (1)Sigma(+), (3)Sigma(+), (1)Pi, and (3)Pi states are evaluated over a wide range of R. The most important effects of the spin-orbit interaction on the dipole moment distribution are discussed.  相似文献   

11.
Ultraviolet photodissociation of SH (X 2Pi, upsilon"=2-7) and SD (X 2Pi, upsilon"=3-7) has been studied at 288 and 291 nm, using the velocity map imaging technique to probe the angular and speed distributions of the S(1D2) products. Photodissociation cross sections for the A 2Sigma+<--X 2Pi(upsilon") and 2Delta<--X 2Pi(upsilon") transitions have been obtained by ab initio calculations at the CASSCF-MRSDCI/aug-cc-pV5Z level of theory. Both the experimental and theoretical results show that SH/SD photodissociation from X 2Pi (upsilon"相似文献   

12.
The vacuum ultraviolet pulsed field ionization-photoelectron and photoionization efficiency spectra of NCCN have been measured in the energy region of 13.25-17.75 eV. The analyses of these spectra have provided accurate ionization energy (IE) values of 13.371+/-0.001, 14.529+/-0.001, 14.770+/-0.001, and 15.516+/-0.001 eV for the formation of NCCN(+) in the X(2)Pi(g), A(2)Sigma(g) (+), B(2)Sigma(u) (+), and C(2)Pi(u) states, respectively. The ionization energy [NCCN(+)(B(2)Sigma(u) (+))] value determined here indicates that the origin of the NCCN(+)(B(2)Sigma(u) (+)) state lies lower in energy by 25 meV than previously reported. A set of spectroscopic parameters for NCCN(+)(X(2)Pi(g)) has been calculated using high level ab initio calculations. The experimental spectra are found to consist of ionizing transitions populating the vibronic levels of NCCN(+), which consist of pure vibronic progressions, combination modes involving the symmetric CN stretch, the CC stretch, and even quanta of the antisymmetric CN stretch, and bending vibrations. These bands are identified with the guidance of the present ab initio calculations.  相似文献   

13.
High resolution optical spectroscopy has been used to study a molecular beam of molybdenum monocarbide (MoC). The Stark effect of the R(e)(0) and Q(fe)(1) branch features of the [18.6] (3)Pi(1)-X (3)Sigma(-)(0,0) band system of (98)MoC were analyzed to determine the permanent electric dipole moments mu(e) of 2.68(2) and 6.07(18) D for the [18.6] (3)Pi(1)(nu=0) and X (3)Sigma(-)(nu=0) states, respectively. The dipole moments are compared with the experimental value for ruthenium monocarbide [T. C. Steimle et al., J. Chem. Phys. 118, 2620 (2003)] and with theoretical predictions. A molecular orbital correlation diagram is used to interpret the observed and predicted trends of ground state mu(e) values for the 4d-metal monocarbides series.  相似文献   

14.
The optical Stark effect in the Q(1) and R(0) lines of the [15.1]1-X (1)Sigma+ (1,0) band of rhodium mononitride (RhN) were recorded and analyzed to determine the permanent electric dipole moments mu for the X (1)Sigma+(upsilon=0) and [15.1]1(upsilon=1) states to be 2.43(5) and 1.75(1) D, respectively. The determined dipole moments are compared to predicted values obtained from density functional theory [Stevens et al., Chem. Phys. Lett. 421, 281 (2006)] and an all-electron ab initio calculation [Shim et al., J. Mol. Struct. THEOCHEM 393, 127 (1997)]. A simple single configuration molecular orbital correlation diagram is used to rationalize the relative values of mu for the 4d mononitrides and RhO. An electronic configuration for the [15.1]1 state is proposed based on the interpretation of the (103)Rh and (14)N magnetic hyperfine interactions.  相似文献   

15.
Ab initio configuration interaction calculations have been performed for the X 1Sigma+ and B 1Sigma+ electronic states of LiCl. Potential energy curves, dipole moment functions, and dipole transition moments have been computed for internuclear distances between R = 2.5a0 and 50a0. Single- and double-excitation configuration interaction wave functions were constructed using molecular orbitals obtained from a two-state averaged multiconfiguration self-consistent-field calculation. This procedure yielded an accurate energy splitting between the covalent and ionic separated-atom limits. The calculated avoided crossing of the X and B state curves occurs at R = 16.2a0, in close agreement with previous calculations using a semiempirical covalent-ionic resonance model. X 1Sigma+ state spectroscopic constants are in excellent agreement with experimental values.  相似文献   

16.
For the diatomic aluminum nitride (AlN), we have constructed potential energy curves for 45 states employing multi-reference variational methods and quantitative basis sets. Thirty-six states are relatively strongly bound, five present local minima, and four are of repulsive nature. Almost all states are of intense multi-reference character rendering their calculation and interpretation quite problematic. Our tentative assignment of the ground state is 3Pi, while a 3Sigma- state is above by less than 1 kcal/mol. Our best estimate for the binding energy of the X3Pi state is D0 = 56.0 +/- 0.5 kcal/mol at re = 1.783 A, in good agreement with the experimental values of D = 66 +/- 9 kcal/mol and re = 1.7864 A. The binding energy of the A3Sigma- state is very similar to the X state because they both correlate to the ground-state atoms, but the bond distance of the former is 0.13 A longer. The first seven states can be tagged as follows: X3Pi, A3Sigma-, a1Sigma+, b1Pi, c1Delta, B3Sigma+, and d1Sigma+, a rather definitive order with the exception of X and A states.  相似文献   

17.
The high-resolution laser induced fluorescence spectra of tungsten mononitride WN and rhenium mononitride ReN have been recorded in a laser ablation/molecular beam spectrometer. The field free spectrum of the (0,0)A (4)Pi(3/2)-X (4)Sigma(1/2) (-) band system of (186)WN has been analyzed to produce B("), B('), and gamma(") values of 0.4659(2), 0.4554(2), and 0.0518(1) cm(-1), respectively. The permanent electric dipole moments mu for the X (4)Sigma(1/2) (-) and A (4)Pi(3/2) state were determined to be 3.77(18) and 2.45(3) D, respectively, from the analysis of the optical Stark effect. The (0,0)[26.0]0(+)-X0(+) band system of ReN was recorded in the presence of a variable static electric field. The ground and excited state electric dipole moments of (187)ReN were determined to be mu(X0(+))=1.96(8) D and mu([26.0]0(+))=3.53(4) D. Splittings in the field free (187)ReN spectrum were analyzed to produce (187)Re (I=5/2) nuclear electric quadrupole coupling constants e(2)Qq(0) of -0.0304(8) and 0.0328(9) cm(-1) for the X0(+) and [26.0]0(+) states, respectively. A molecular orbital correlation model is used to interpret the observation and a comparison is made to CrN and MoN.  相似文献   

18.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2.  相似文献   

19.
We have measured the Stark shift of the A2Pi(1/2)-X2Sigma+ transition in YbF. We use a molecular beam triple resonance method, with two laser transitions acting as pump and probe, assisted by an rf transition that tags a single hyperfine transition of the X state. After subtracting the known ground state Stark shift, we obtain a value of 70.3(1.5) Hz/(V/cm)2 for the static electric polarizability of the state A2Pi(1/2) (J=1/2),f by fitting our data to a purely quadratic Stark shift in the interval 0-5 kV/cm. A more exact analysis that does not assume a perfectly quadratic Stark effect yields the value mu(e)=2.48(3) D for the electric dipole moment of the A2Pi(1/2)(v=0) state.  相似文献   

20.
The low-lying XSigma+, a3Delta, A1Delta, b3Sigma+, B1Pi, c3Pi, C1Phi, D1Sigma+, E1Pi, d3Phi, and e3Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X1Sigma+, D1Sigma+, and E1Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号