首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
《中国化学快报》2022,33(9):4169-4174
As an extensively applied therapeutic approach to combat tumors, radiotherapy generates localized ionizing radiation to destruct tumor cells. Despite its importance in clinical oncology, radiotherapy would often cause significant organ toxicity, and its therapeutic effect is limited by tumor hypoxia. Moreover, although abscopal therapeutic effects have occasionally been observed, radiotherapy is still mostly employed as a local treatment method that could hardly control tumor metastases. In recent years, strategies involving biomaterials and nanomedicine have received increasingly high attention to enhance cancer radiotherapy. Beyond sensitizing tumors for radiotherapy via various mechanisms, many biomaterial systems with immune stimulating effects have also been introduced to boost the antitumor immunity post cancer radiotherapy. In this mini-review, we will summarize the progress of different biomaterials and nanomedicine systems in combination with radiotherapy to trigger antitumor immune responses and enhance the efficacy of immunotherapy, and discusses the perspectives and challenges of this research direction aimed at clinical translations.  相似文献   

2.
Nanozymes, nanomaterials with enzyme-mimicking activity, have attracted tremendous interest in recent years owing to their ability to replace natural enzymes in various biomedical applications, such as biosensing, therapeutics, drug delivery, and bioimaging. In particular, the nanozymes capable of regulating the cellular redox status by mimicking the antioxidant enzymes in mammalian cells are of great therapeutic significance in oxidative-stress-mediated disorders. As the distinction of physiological oxidative stress (oxidative eustress) and pathological oxidative stress (oxidative distress) occurs at a fine borderline, it is a great challenge to design nanozymes that can differentially sense the two extremes in cells, tissues and organs and mediate appropriate redox chemical reactions. In this Review, we summarize the advances in the development of redox-active nanozymes and their biomedical applications. We primarily highlight the therapeutic significance of the antioxidant and prooxidant nanozymes in various disease model systems, such as cancer, neurodegeneration, and cardiovascular diseases. The future perspectives of this emerging area of research and the challenges associated with the biomedical applications of nanozymes are described.  相似文献   

3.
Nanomaterials with enzyme-like activities, coined nanozymes, have been researched widely as they offer unparalleled advantages in terms of low cost, superior activity, and high stability. The complex structure and composition of nanozymes has led to extensive investigation of their catalytic sites at an atomic scale, and to an in-depth understanding of the biocatalysis occurring. Single-atom catalysts (SACs), characterized by atomically dispersed active sites, have provided opportunities for mimicking metalloprotease and for bridging the gap between natural enzymes and nanozymes. In this Minireview, we illustrate the unique properties of nanozymes and we discuss recent advances in the synthesis, characterization, and applications of SACs. Subsequently, we outline the impressive progress made in single-atom nanozymes and we discuss their applications in sensing, degradation of organic pollutants, and in therapeutic roles. Finally, we present the major challenges and opportunities remaining for a successful marriage of nanozymes and SACs.  相似文献   

4.
Nanomaterials with enzyme‐like activities, coined nanozymes, have been researched widely as they offer unparalleled advantages in terms of low cost, superior activity, and high stability. The complex structure and composition of nanozymes has led to extensive investigation of their catalytic sites at an atomic scale, and to an in‐depth understanding of the biocatalysis occurring. Single‐atom catalysts (SACs), characterized by atomically dispersed active sites, have provided opportunities for mimicking metalloprotease and for bridging the gap between natural enzymes and nanozymes. In this Minireview, we illustrate the unique properties of nanozymes and we discuss recent advances in the synthesis, characterization, and applications of SACs. Subsequently, we outline the impressive progress made in single‐atom nanozymes and we discuss their applications in sensing, degradation of organic pollutants, and in therapeutic roles. Finally, we present the major challenges and opportunities remaining for a successful marriage of nanozymes and SACs.  相似文献   

5.
李俊容  沈爱国  胡继明 《应用化学》2016,33(11):1245-1252
在纳米材料基础上诞生的纳米酶推动了化学、材料学以及生物学等学科的发展。纳米酶克服了天然酶的许多缺点,如价格昂贵、易失活和储存条件要求苛刻等,对生物传感、免疫分析、癌症诊断和治疗等领域产生了巨大的影响。 本论文主要介绍了迄今发现的纳米酶种类、纳米酶调控方式以及纳米酶在分析检测中的应用进展。 此外,针对纳米酶未来发展方向提出了一些思考和建议。  相似文献   

6.
Charged-particle radiotherapy (CPRT) utilizing low and high linear energy transfer (low-/high-LET) ionizing radiation (IR) is a promising cancer treatment modality having unique physical energy deposition properties. CPRT enables focused delivery of a desired dose to the tumor, thus achieving a better tumor control and reduced normal tissue toxicity. It increases the overall radiation tolerance and the chances of survival for the patient. Further improvements in CPRT are expected from a better understanding of the mechanisms governing the biological effects of IR and their dependence on LET. There is increasing evidence that high-LET IR induces more complex and even clustered DNA double-strand breaks (DSBs) that are extremely consequential to cellular homeostasis, and which represent a considerable threat to genomic integrity. However, from the perspective of cancer management, the same DSB characteristics underpin the expected therapeutic benefit and are central to the rationale guiding current efforts for increased implementation of heavy ions (HI) in radiotherapy. Here, we review the specific cellular DNA damage responses (DDR) elicited by high-LET IR and compare them to those of low-LET IR. We emphasize differences in the forms of DSBs induced and their impact on DDR. Moreover, we analyze how the distinct initial forms of DSBs modulate the interplay between DSB repair pathways through the activation of DNA end resection. We postulate that at complex DSBs and DSB clusters, increased DNA end resection orchestrates an increased engagement of resection-dependent repair pathways. Furthermore, we summarize evidence that after exposure to high-LET IR, error-prone processes outcompete high fidelity homologous recombination (HR) through mechanisms that remain to be elucidated. Finally, we review the high-LET dependence of specific DDR-related post-translational modifications and the induction of apoptosis in cancer cells. We believe that in-depth characterization of the biological effects that are specific to high-LET IR will help to establish predictive and prognostic signatures for use in future individualized therapeutic strategies, and will enhance the prospects for the development of effective countermeasures for improved radiation protection during space travel.  相似文献   

7.
宋雪娇  刘庄 《化学通报》2015,78(4):292-298
光热治疗是利用在近红外具有较强光吸收的材料将光能转化为热能从而杀死癌细胞,与传统的化疗、放疗相比具有副作用小、治疗特异性好的优点。近年来各种不同的纳米材料被用于肿瘤光热治疗,并在动物肿瘤模型实验中取得了令人鼓舞的治疗效果。本文重点介绍几种典型的有机纳米材料在光热治疗中的应用,并讨论这一新兴领域的发展趋势。  相似文献   

8.
Artificial nanoenzymes with enzyme-like catalytic activity have gradually become an alternative to natural enzymes due to their low production cost, high stability, and good tolerance. In recent years, various enzyme mimics have emerged with the rapid development of nano-teclnology. Metal-organic frameworks(MOFs) are a novel class of porous inorganic-organic hybrid materials made from metal ions/clusters and organic ligands, and MOFs-based nanozymes show great prospect in biosensing, biocatalysis, biomedical imaging, and therapeutic applications, due to unique properties, such as high specific surface area, high porosity, tunable morphology, and excellent biocatalytic properties. In this paper, the recent progresses concerning MOFs-based nanozymes are systematically summarized, including the synthesis, design strategies and related applications, which are divided into two major categories, namely, MOFs structured nanoenzymes and MOFs composite structured nanoenzymes. Meanwhile, the applications of various classifications of MOFs research are introduced. At the end, current challenges and future perspectives of MOFs-based nanozymes are also discussed. It is highly expected that this review on this important area can provide a meaningful guidance for tumor therapy, biosensing and other aspects.  相似文献   

9.
It is known that extracellular free radical reactive oxygen species (ROS) rather than intracellular ROS plays a non-substitutable role in regulation of tumor-suppressing (M1) tumor-associated macrophages (TAMs) polarization. However, most therapeutic nanoplatforms mainly provide intracellular ROS and exhibit insufficient accumulation near TAMs, which strongly limits the macrophage-based immunotherapeutic effects. Here we design and synthesize chiral MoS2/CoS2 nanozymes with peroxidase (POD)-like and catalase (CAT)-like activities to efficiently modulate TAMs polarization and reverse tumor immunosuppression by harnessing their chirality-specific interactions with biological systems. MoS2/CoS2 nanoparticles coordinated with d -chirality (d -NPs, right-handed) show improved pharmacokinetics with longer circulating half-life and higher tumor accumulation compared with their l ( left-handed)- and dl ( racemate)-counterparts. Further, d -NPs can escape from macrophage uptake in the tumor microenvironment (TME) with the aid of cell-unpreferred opposite chirality and act as extracellular hydroxyl radicals (⋅OH) and oxygen (O2) generators to efficiently repolarize TAMs into M1 phenotype. On the contrary, l -NPs showed high cellular uptake due to chirality-driven homologous adhesion between l -NPs and macrophage membrane, leading to limited M1 polarization performance. As the first example for developing chiral nanozymes as extracellular-localized ROS generators to reprogram TAMs for cancer immunotherapy, this study opens an avenue for applications of chiral nanozymes in immunomodulation.  相似文献   

10.
Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood–brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.  相似文献   

11.
Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.  相似文献   

12.
Colorimetric sensing strategies as a powerful point-of-care testing(POCT) tool have attracted significant interest in various chem/biosensing applications.Taking the excellent bare-eye-detectable signaling feature,nanozymes-based colorimetric sensors enable more potential applications and have been a new forefront in the colorimetric POCT analysis toward different target analytes.However,the low catalytic activity of nanozymes in most cases limits their practical application.Recent efforts demonstrate that the aggregation-induced nanozymes provide a general means to modulate nanozymes activity and enhance colorimetric sensing performances of some nanozymes-based colorimetric sensors.But there are few reports are explored to discuss and review such aggregation-induced nanozymes and their colorimetric sensing applications.To highlight the advances and progress in aggregation-induced nanozymes based colorimetric assays,we herein summary the fundamentals,classify and applications of this newlydeveloping field,focusing on the aggregation-induced activity enhancement of nanozymes(AIAEnanozymes) with a significant "signal-on" feature and aggregation-induced activity inhibition of nanozymes(AIAI-nanozymes) with a dramatical "signal-of" characteristics.Finally,we also propose the current challenges and the future prospects on both AIAE-nanozymes and AIAI-nanozymes.  相似文献   

13.
Radiotherapy, frequently used for treatment of solid tumors, carries two main obstacles including acquired radioresistance in cancer cells during radiotherapy and normal tissue injury. Phenylpropanoids, which are naturally occurring phytochemicals found in plants, have been identified as potential radiotherapeutic agents due to their anti-cancer activity and relatively safe levels of cytotoxicity. Various studies have proposed that these compounds could not only sensitize cancer cells to radiation resulting in inhibition of growth and cell death but also protect normal cells against radiation-induced damage. This review is intended to provide an overview of recent investigations on the usage of phenylpropanoids in combination with radiotherapy in cancer treatment.  相似文献   

14.
Tumor hypoxia, the “Achilles’ heel” of current cancer therapies, is indispensable to drug resistance and poor therapeutic outcomes especially for radiotherapy. Here we propose an in situ catalytic oxygenation strategy in tumor using porphyrinic metal‐organic framework (MOF)‐gold nanoparticles (AuNPs) nanohybrid as a therapeutic platform to achieve O2‐evolving chemoradiotherapy. The AuNPs decorated on the surface of MOF effectively stabilize the nanocomposite and serve as radiosensitizers, whereas the MOF scaffold acts as a container to encapsulate chemotherapeutic drug doxorubicin. In vitro and in vivo studies verify that the catalase‐like nanohybrid significantly enhances the radiotherapy effect, alleviating tumor hypoxia and achieving synergistic anticancer efficacy. This hybrid nanomaterial remarkably suppresses the tumor growth with minimized systemic toxicity, opening new horizons for the next generation of theranostic nanomedicines.  相似文献   

15.
Nanozymes have attracted extensive interest owing to their high stability, low cost and easy preparation, especially in the field of cancer therapy. However, the relatively low catalytic activity of nanozymes in the tumor microenvironment (TME) has limited their applications. Herein, we report a novel nanozyme (PtFe@Fe3O4) with dual enzyme‐like activities for highly efficient tumor catalytic therapy. PtFe@Fe3O4 shows the intrinsic photothermal effect as well as photo‐enhanced peroxidase‐like and catalase‐like activities in the acidic TME, thereby effectively killing tumor cells and overcoming the tumor hypoxia. Importantly, a possible photo‐enhanced synergistic catalytic mechanism of PtFe@Fe3O4 was first disclosed. We believe that this work will advance the development of nanozymes in tumor catalytic therapy.  相似文献   

16.
Inflammatory bowel disease (IBD) is a type of chronic inflammatory disorder that interferes with the patient's lifestyle and, in extreme situations, can be deadly. Fortunately, with the ever-deepening understanding of the pathological cause of IBD, recent studies using nanozyme-based materials have indicated the potential toward effective IBD treatment. In this review, the recent advancement of nanozymes for the treatment of enteritis is summarized from the perspectives of the structural design of nanozyme-based materials and therapeutic strategies, intending to serve as a reference to produce effective nanozymes for moderating inflammation in the future. Last but not least, the potential and current restrictions for using nanozymes in IBD will also be discussed. In short, this review may provide a guidance for the development of innovative enzyme-mimetic nanomaterials that offer a novel and efficient approach toward the effective treatment of IBD.  相似文献   

17.
Single‐atom nanozymes (SAzymes) with high atomic utilization, excellent catalytic activities, and selectivity have recently attracted significant interest. Usually, they contain only isolated metal atoms embedded in host matrices. However, traditional measuring instruments are extremely difficult to obtain their useful structural information due to ultra‐low metal loading, amorphous structure, coordination with light‐weight surface atoms and/or co‐existing of other metal elements. Synchrotron radiation‐based X‐ray absorption fine structure spectroscopy (XAFS) has demonstrated its usefulness for this type of catalyst. In this mini‐review, we have summarized the recent progress using XAFS to characterize the fine atomic structure of these nanozymes. The synthetic strategies of SAzymes, the principle of XAFS, delicate structural information by XAFS, and the applications of SAzymes have been presented. Furthermore, the outlook and challenges in this active research field have also been discussed. We expect that the help of XAFS can offer a wealth of opportunities to design and develop more efficient SAzymes and apply them to various fields.  相似文献   

18.
Cancer represents one of the main causes of human death in developed countries. Most current therapies, unfortunately, carry a number of side effects, such as toxicity and damage to healthy cells, as well as the risk of resistance and recurrence. Therefore, cancer research is trying to develop therapeutic procedures with minimal negative consequences. The use of nanomaterial‐based systems appears to be one of them. In recent years, great progress has been made in the field using nanomaterials with high potential in biomedical applications. Carbon nanomaterials, thanks to their unique physicochemical properties, are gaining more and more popularity in cancer therapy. They are valued especially for their ability to deliver drugs or small therapeutic molecules to these cells. Through surface functionalization, they can specifically target tumor tissues, increasing the therapeutic potential and significantly reducing the adverse effects of therapy. Their potential future use could, therefore, be as vehicles for drug delivery. This review presents the latest findings of research studies using carbon nanomaterials in the treatment of various types of cancer. To carry out this study, different databases such as Web of Science, PubMed, MEDLINE and Google Scholar were employed. The findings of research studies chosen from more than 2000 viewed scientific publications from the last 15 years were compared.  相似文献   

19.
Emerging as a cost-effective and robust enzyme mimic, nanozymes have drawn increasing attention with broad applications ranging from cancer therapy to biosensing. Developing nanozymes with both accelerated and inhibited biocatalytic properties in a biological context is intriguing to peruse more advanced functions of natural enzymes, but remains challenging, because most nanozymes are lack of enzyme-like molecular structures. By re-visiting and engineering the well-known Fe-N-C electrocatalyst that has a heme-like Fe-Nx active sites, herein, it is reported that Fe-N-C could not only catalyze drug metabolization but also had inhibition behaviors similar to cytochrome P450 (CYP), endowing it a potential replacement of CYP for preliminary evaluation of massive potential chemicals, drug dosing guide, and outcome prediction. In addition, in contrast to electrocatalysts, the highly graphitic framework of Fe-N-C may not be obligatory for a competitive CYP-like activity.  相似文献   

20.
Raman spectroscopy provides information on bone chemical composition and structure via widely used metrics including mineral to matrix ratio, mineral crystallinity and carbonate content, collagen crosslinking ratio and depolarization ratios. These metrics are correlated with bone material properties, such as hardness, plasticity and Young''s modulus. We review application of Raman spectroscopy to two important irradiated animalmodels: the mouse tibia, amodel for damage to cortical bone sites including the rib (breast cancer) and to healthy tissue adjacent to extremity sarcomas, and the rat mandible, a model for radiation damage in head and neck cancer radiotherapy. Longitudinal studies of irradiated mouse tibia demonstrate that radiation-induced matrix abnormalities can persist even 26 weeks postradiation. Polarized Raman spectroscopy shows formation of more ordered orientation of both mineral and collagen. At 8 weeks post-radiation, irradiated rat hemimandible exhibits transient hypermineralization, increased collagen cross-linking and decreased depolarization ratios of mineral and collagen. A standard radioprotectant, amifostine, mitigates rat mandible radiation damage, with none remaining detectable 18 weeks post-radiation. Already a powerful tool to monitor radiation damage, Raman spectroscopy may be important in development of new radiotherapy protocols and radioprotective agents. Further in vivo studies of radiation effects on the rodent models are underway, as are development of methodologies for eventual use in human subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号