首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytica chimica acta》2003,500(1-2):171-183
Advances in analytical methodology for speciation of selenium in selenized-yeast food supplements were discussed on the basis of the recent developments in the authors’ laboratory. Particular attention was given to the sample preparation with regard to the fractionation of selenium into different classes of chemical species, the high resolution fractionation of selenium from yeast water extracts by size-exclusion chromatography and characterization of the water soluble protein fraction by combined matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry (TOF MS) and electrospray quadrupole-TOF tandem MS. The true speciation of protein-incorporated selenium (down to individual proteins characterized by a unique aminoacid sequence) was discussed using an example of a family of selenium-containing proteins formed in yeast by the substitution of methionine residues by selenomethionine in a salt stress-induced protein.  相似文献   

2.
A rapid instrumental system for measuring selenium via 17 second77mSe has been applied to the analysis of a wide variety of biological specimens encountered in biomedical research. The reliability and versatility of the method is documented for serum and animal tissue specimens. Analysis results for SRM 1577 bovine liver show excellent accuracy and precision.  相似文献   

3.
4.
A simple separation method was applied to determine rhenium in river water using Q-ICP-MS and HR-ICP-MS. Re was concentrated from 420-925 ml river water using a TEVA resin minicolumn. Such extraction using a resin could separate Re from most sample matrices and trace elements. Almost 100% recovery was found throughout the method as determined with radioactive multitracers. The HR-ICP-MS was also used for the direct determination because of its low detection limit for Re (0.007 pg/ml). The Re concentration in the river water samples ranged from 0.9 to 6.5 pg/ml and the three analysis results showed good agreement with each other.  相似文献   

5.
Normal heptane, xylene, and a 0.01 molar solution of 4-(5-nonyl)pyridine in toluene have been investigated as extractants for selenium(IV) from nitric acid media in potassium iodide. Various parameters affecting the distribution of the element are investigated. Extraction at high aqueous to organic phase volume ratio has been studied, using a liquid-liquid extraction plant with a pulsation column. The results have been employed to measure selenium in spiked water samples.  相似文献   

6.
Hashemi P  Boroumand J  Fat'hi MR 《Talanta》2004,64(3):578-583
Three different agarose-based chelating adsorbents with, respectively, iminodiacetic acid (IDA), tris(2-aminoethyl)amine (TREN) and dipicolylamine (DPA) functional groups and an agarose-based anion exchanger (Q-Sepharose), were studied for the separation and preconcentration of Cr(III) and Cr(VI) species in water. Column recoveries of all the adsorbents were plotted against pH, and it was found that at pH 3.0 the IDA adsorbent selectively adsorbs Cr(III), with a 100 ± 1.0% recovery. The Q-Sepharose, on the other hand, accumulated only Cr(VI) at this pH, again with a recovery of 100 ± 1.0%. A dual column system was accordingly designed, using the two adsorbents in tandem, for the separation and preconcentration of the chromium species.The effects of pH, sample flow rate, column length, eluent type, eluent volume, acid concentration and interfering ions on the recoveries of Cr(III) and Cr(VI) were carefully studied. It was shown that by passing test solutions, at pH 3.0; through the dual column system, the two chromium species could be individually collected on the columns, respectively, and eluted, one after the other. A portion of 2 mol l−1 hydrochloric acid was used for elution of each column before final measurement by flame AAS method. A preconcentration factor of 12, a detection limit of 7.7 ± 0.1 μg l−1 and a precision expressed as relative standard deviation of 0.4% (at 0.3 mg l−1) were achieved for six replicates.Application of the developed method to the determination of chromium species in spiked river and tap water and wastewater samples, from a dye production plant, resulted in excellent agreements with accepted concentrations.  相似文献   

7.
Technetium (99mTc), a decay product of molybdenum (99Mo), is employed as radioisotope in nuclear medicine. Several practical devices known as generators are commercially available which enable the user to separate the daughter from the parent radionuclide. The present study is focused on quality control of chromatographic technetium generator. A properly constructed generator should comply with international requirements of radionuclide purity of 90Sr/99Mo ≤ 6 × 10?8 and 89Sr/99Mo ≤ 6 × 10?7. For this purpose an analytical method was optimized to quantify radiostrontium (89Sr and 90Sr) in sodium molybdate [Na 2 99 MoO4] solution, a fission product used for 99Mo/99mTc generators. Dowex 1 × 8 and alumina were used in sequence followed by tributyl phosphate extraction for radiostrontium separation. Cerenkov measurement of 89Sr and 90Sr (through its descendent 90Y) was performed using Perkin Elmer Tricarb LSA 3170 with detection efficiency of 42 and 14 %, respectively. Since efficiency of Cerenkov counting is sensitive to presence of color, spectral index of sample was used to correct the counting efficiency. The chemical recovery for strontium was 22 % and for yttrium was 80 % as determined by inductively coupled plasma optical emission spectrometry. Lower limit of detection was found to be 6.3 and 14.4 Bq L?1 for 90Sr and 89Sr, respectively with 60 min counting time. Hence method can be applied successfully to analyze 89,90Sr in fission molybdenum used as radiopharmaceutical with a relative error of <10 %.  相似文献   

8.
For the quantitative speciation of tributyltin, Bu3Sn+ (TBT), in the presence of dibutyltin, Bu2Sn2+ (DBT), monobutyltin, BuSn3+ (MBT), triphenyltin, Ph3Sn+ (TPT), and inorganic tin in water samples and sediments, an accurate, reproducible, simple and rapid electrochemical method was developed. After extraction of the organotin compounds with dichloromethane, TBT could be selectively determined as species by alternating current polarography directly in the organic phase without any derivatisation. The successful application of this technique could be proved by the results obtained by intercomparison exercises on TBT in water samples and sediments, organized by the Community Bureau of Reference (BCR). For the application of this technique to sea water samples a preliminary ion exchange separation of TBT from the major components of sea water was performed, achieving a detection limit for TBT in the ppt range.  相似文献   

9.
Selenium is an essential micronutrient required at trace levels for human health, and dietary intake is the only source of selenium, which appears mainly in the form of selenocompounds. In this study, Flammulina velutipes was grown for 80 days in standard medium containing selenite, and the level of total selenium in the organism was then determined by inductively-coupled plasma mass spectrometry (ICP-MS). In Se-cultivated F. velutipes, selenium was mainly distributed in the water-soluble form and the content of soluble selenium-containing species in Se-cultivated F. velutipes was 47.10 mg kg−1, accounted for 72.5% of the total selenium content. The water-soluble proteins in F. velutipes were extracted and precipitated by different ammonium sulfate saturation concentrations. Size-exclusion high performance liquid chromatography (SEC-HPLC) analysis of these proteins revealed the presence of at least six selenium-containing protein species, with molecular weights ranging from 9000 to 74,000 Da, Selenium-containing proteins represented about 7.0% of the total soluble selenium. The result of this study suggested that Se-cultivated F. velutipes could potentially be considered as a selenium supplement for human.  相似文献   

10.
Adsorption colloid flotation can be applied successfully to the separation of selenium as SeO32- from sea water. Separation is achieved in 5 min. The modified catalytic method of West and Ramakrishna is used to determine the selenium. The recovery of selenium based on spiked sea-water samples is 100 ± 10%. Standard addition analysis of near-shore Oahu sea water showed a value of 0.40 ± 0.12 μg l-1.  相似文献   

11.
In the present study, an analytical procedure was developed for the determination of short-chain fatty acids (SCFAs) in landfill leachate and municipal wastewater employing injection of aqueous samples to gas chromatograph with flame ionization detector (GC-FID). Chromatographic conditions such as a separation system, injection volume, oven temperature program were investigated and selected. With two columns, one with a polar (polyethylene glycol) and one with a non-polar (dimethylpolisiloxane) stationary phase, good separation of SCFAs, containing from 2 to 8 carbon atoms, was achieved. The sample volume was 2 μL and the temperature program 80 °C (30 s) then 7 °C min−1 to 220 °C (2 min). LOQs values were below 0.25 mg L−1. The concentrations of the acids in the landfill leachate studied ranged from 0.45 ± 0,059 (average ± extended uncertainty) mg L−1 for pentanoic acid to 15.2 ± 0.73 mg L−1 for ethanoic acid. Concentrations of SCFAs in the municipal wastewater were lower than LOQs.  相似文献   

12.
Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed.  相似文献   

13.
A new method for the speciation analysis of selenite (Se-IV), selenate (Se-VI), and selenocyanate (SeCN) is described and first results are presented on the distribution of these species in wastewater samples from a Brazilian oil refinery plant. The method is based on the ion chromatographic separation of these species followed by on-line detection of 77Se, 78Se, and 82Se using quadrupole inductively coupled plasma-mass spectrometry (ICPMS). The system employed consisted of a HPLC pump equipped with a manual syringe loading injector, and an anion exchange column (Metrosep A Supp1), the latter interfaced with the ICPMS via a concentric nebulizer–cyclonic spray chamber sample introduction device. Several eluents already described in the literature for the speciation analysis of inorganic selenium were tested, permitting in most cases a good separation of Se(IV) and Se(VI), however, resulting all in very long residence times (> 30 min) and associated peak broadening for the SeCN ion. This drawback could be effectively avoided by using as the mobile phase a solution of cyanuric acid (3 mmol L−1), modified with acetonitrile (2% v/v) and percchlorate acid (2.5 mmol L−1). Typical retention times (s) for the three analyte species were: selenite (210) < selenate (250) < selenocyanate (450). Repeatabilities in peak position were better than 1% and in peak area evaluation about 3%. Absolute limits of detection (in ng) for these species using an ELAN 5000 instrument and a 500-μL sample injection loop are 0.04, 0.05 and 0.09, respectively. No certified reference materials were available for this study, however, results on spiked wastewater samples showed acceptable recoveries (80–110%) and repeatabilities (RSD < 5%), thus validating this method for its intended purpose. Once optimized, the method was applied to wastewater samples from an oil refinery plant. In all samples until now analyzed, selenocyanate was by far the most abundant selenium species reaching concentrations of up to 90 μg L−1. Selenite was detected only in one sample and selenate could not identified in any of the samples analyzed. Total concentrations of selenium in most samples, assessed by hydride generation ICPMS and by solution nebulization inductively coupled plasma optical emission spectrometry (ICPOES), exceeded those obtained from speciation analysis, indicating the presence of other selenium species not observed by the here used methodology.  相似文献   

14.
In this communication, we describe an experimental arrangement for sequential impedance measurements which has an experimental time comparable to that of techniques using integral transforms. This method has the advantage of simplicity of operation. A computer analysis of the data is also described.  相似文献   

15.
潘怡帆  张锋  高薇  孙悦伦  张森  练鸿振  茅力 《色谱》2022,40(11):979-987
元素的形态决定了其在环境和生物过程中的不同行为,形态分析正在被分析化学、环境化学、地球化学、生态学、农学和生物医学等众多学科所关注。环境和生物样品基质复杂、化学形态多样、含量低且易转化是元素形态分析面临的挑战,因此对元素形态的甄别、定量、生态毒性评价和生理功能研究需要对原生形态进行高选择性识别和高效率分离。固相萃取是一种有效应对以上难题的方法,但现有材料和方法远不能满足要求。离子印迹聚合物可与印迹金属离子特异性结合,具有准确、灵敏、可靠的特点,近年来在元素形态分离富集和分析检测方面得到了较为广泛的应用。鉴于非磁性吸附剂在固相萃取操作时,需要将分散在样品溶液中的吸附材料经过离心或过滤分离,操作比较繁琐费时,而磁性材料易被外部磁场快速分离,因此操作简便快速的磁固相萃取正成为元素形态分离富集中一种极具潜力的方法。这篇综述系统总结了离子印迹技术的最新进展,包括离子印迹技术的原理、离子印迹聚合物的制备方法,并根据元素形态分析中离子印迹磁固相萃取的发展现状,分析了离子印迹技术所面临的挑战,最后对元素形态分析中离子印迹技术的未来发展方向和策略提出了建议,提出开发基于有机-无机杂化聚合的多功能磁性离子印迹纳米复合物用于样品的前处理是建立识别选择性高、分离能力强、吸附容量大、形态稳定性好的形态分析方法的一种重要举措。  相似文献   

16.
A simple, accurate, sensitive and selective method was described for rapid determination of ultra-trace quantities of selenium. Selenium(IV) was collected on activated carbon (AC) after reduction to elemental Se by l-ascorbic acid. The collected selenium was then dissolved by oxidation reaction with bromate in acidic media and was indirectly determined through the bromide formation using square-wave voltammetry (OSWV). The total amount of Se(IV) and Se(VI) was collected on AC after its reduction by hydrazine. Selenium in the range 0.01-20 μg L−1 could be determined by this method. The method was used to the determination of Se(IV) and Se(VI) in natural water with satisfactory results.  相似文献   

17.
For the multielement analysis of sediments (Li, Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Mo, Cd, Sn, Sb, Cs, Ba, lanthanides, Hf, Tl, Pb, Bi, Th, U) a dissolution with a hydrofluoric - sulfuric - nitric acid mixture, subsequent evaporation of the acids, dissolution of the residue by HCl, evaporation of the acid and redissolution of the residue by HNO3 is a useful procedure which allows the dissolution of a wide range of mineral mixtures. An ICP-MS was used for the determination of the elements. For Cr, Ni, Cu and Zn the analysis may be complicated by the interferences of sulfur or chlorine species, which remain in the solution during dissolution. The best analytical results for these elements can be achieved in the medium resolution mode of a HR-ICP-MS. In the low resolution mode (quadrupole instrument characteristics) the determination of these elements should be performed by the isotopes of 52Cr, 62Ni, 63Cu, 68Zn as it was found that interferences from remaining acids are of minor importance. Received: 2 January 1997 / Revised: 17 March 1997 / Accepted: 25 March 1997  相似文献   

18.
A simple, sensitive, and cost-effective analytical method was developed for the speciation analysis of inorganic selenium by combining a nano-TiO2 preconcentration with an ion chromatography-conductivity detection (IC-CD) system. The experimental conditions for the simultaneous adsorption and desorption of Se(IV) and Se(VI) were carefully investigated. Under the established optimum condition, the Se(IV) and Se(VI) ions could been simultaneously adsorbed onto the nano-TiO2 surface at pH 4.0, and then effectively desorbed by 0.1 M sodium hydroxide eluent. The adsorption process was fast and reached adsorption equilibrium within 10 min. The nano-TiO2 also exhibited high adsorption capacity with 11.3 mg g? 1 for Se(IV) and 8.34 mg g? 1 for Se(VI). The enrichment factors for Se(IV) and Se(VI) were calculated to be 39 and 30, respectively, with sample volume of 50 mL. The detection limits (3σ) were 0.8 μg L? 1 for Se(IV) and 0.4 μg L? 1 for Se(VI), which were sensitive enough for the routine analysis of water and drink samples. The relative standard deviation was calculated to be < 4% (n = 6) for detection of 30 μg L? 1 Se(IV) and 30 μg L? 1 Se(VI). The results of the present work confirmed that our developed nano-TiO2-IC-CD method could be applied for the detection of inorganic selenium species in tap water and drink samples with good recoveries in the range of 82%–108%.  相似文献   

19.
It is known that arsenic has different toxicological properties dependent upon both its oxidation state for inorganic compounds, as well as the different toxicity levels exhibited for organic arsenic compounds. The field of arsenic speciation analysis has grown rapidly in recent years, especially with the utilization of high-performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICP-MS), a highly sensitive and robust detector system. Complete characterization of arsenic compounds is necessary to understand intake, accumulation, transport, storage, detoxification and activation of this element in the natural environment and living systems. This review describes the essential background and toxicity of arsenic in the environment, and more importantly, some currently used chromatographic applications and sample handling procedures necessary to accurately detect and quantify arsenic in its various chemical forms. Applications and work using only HPLC-ICP-MS for arsenic speciation of environmental and biological samples are presented in this review.  相似文献   

20.
Advanced extraction methods have been developed for direct speciation of dissolved inorganic and organic selenium (Se) species in aqueous extracts of medicinal plants (MPs). The inorganic species of Se (SeIV and SeVI) were separated from organic forms by adsorbing inorganic Se on alumina, while the organic Se was not retained. The retained inorganic Se species was eluted with 10 mL 0.2 M HCl. The total inorganic Se species was determined after prereduction of SeVI into SeIV with concentrated HCl. The SeIV in the eluent and total inorganic Se species were then complexed with diethyldithiocarbamate. The resultant complexes were entrapped in the nonionic surfactant Triton X-114. The total Se, organic Se, total inorganic Se, and SeIV species were determined by electrothermal atomic absorption spectrometry with a modifier. The SeVI concentration was obtained by subtracting SeIV from total inorganic Se contents. The main factors affecting the methodologies were investigated in detail. Under the optimized experimental conditions, the LOD for SeIV was 50 microg/L. Among dissolved inorganic and organic Se species in aqueous extracts of MPs, organic Se species were present in the range of 74-84%, SeIV 3.62-7.47%, and SeVI 12.4-18.57% of total Se contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号